
Remote Sensing of Environment 165 (2015) 64–85

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Regional ocean-colour chlorophyll algorithms for the Red Sea
Robert J.W. Brewin a,b,⁎, Dionysios E. Raitsos a, Giorgio Dall'Olmo a,b, Nikolaos Zarokanellos c, Thomas Jackson a,
Marie-Fanny Racault a, Emmanuel S. Boss d, Shubha Sathyendranath a,b, Burt H. Jones c, Ibrahim Hoteit e

a Plymouth Marine Laboratory (PML), Prospect Place, The Hoe, Plymouth PL1 3DH, UK
b National Centre for Earth Observation, PML, Plymouth PL1 3DH, UK
c King Abdullah University for Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
d School of Marine Sciences, University of Maine, Orono, ME 04469-5741, USA
e King Abdullah University for Science and Technology (KAUST), Earth Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
⁎ Corresponding author at: Plymouth Marine Laborat
Hoe, Plymouth PL1 3DH, UK.

E-mail address: robr@pml.ac.uk (R.J.W. Brewin).

http://dx.doi.org/10.1016/j.rse.2015.04.024
0034-4257/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 3 October 2014
Received in revised form 30 March 2015
Accepted 22 April 2015
Available online xxxx

Keywords:
Phytoplankton
Ocean colour
Remote sensing
Chlorophyll
Red Sea
Validation
Coloured dissolved organic matter
The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba
in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological en-
vironment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of
phytoplankton biomass) offer an observational platform to monitor the health of the Red Sea. However, little
is known about the optical properties of the region. In this paper, we investigate the optical properties of the
Red Sea in the context of satellite ocean-colour estimates of chlorophyll concentration. Making use of a new
merged ocean-colour product, from the European Space Agency (ESA) Climate Change Initiative, and in situ
data in the region, we test the performance of a series of ocean-colour chlorophyll algorithms.We find that stan-
dard algorithms systematically overestimate chlorophyll when comparedwith the in situdata. To investigate this
bias we develop an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans
expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the
Red Sea model to tune the standard chlorophyll algorithms and the overestimation in chlorophyll originally ob-
served was corrected. Results suggest that the overestimation was likely due to an excess of CDOM absorption
per unit chlorophyll in the Red Sea when compared with average global conditions. However, we recognise
that additional information is required to test the influence of other potential sources of the overestimation,
such as aeolian dust, andwediscuss uncertainties in the datasets used.Wepresent a series of regional chlorophyll
algorithms for the Red Sea, designed for a suite of ocean-colour sensors, that may be used for further testing.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The Red Sea is a narrow, semi-enclosed oceanic basin situated
between the continents of Africa and Asia. At its southern end, it is
connected to the Gulf of Aden and Arabian Sea, through the strait of
Bab-el-Mandeb, and at its northern end to the Mediterranean Sea
through the Suez Canal. Situated between 12°N and 28°N, it provides
the shortest commercial shipping route between the Atlantic and
Indian Ocean and thus is a major economic asset to the region (Johns
& Sofianos, 2012). The Red Sea is also theworld's northernmost tropical
sea and among thewarmest andmost saline seas on the planet (Belkin,
2009; Longhurst, 2007; Raitsos et al., 2011). These unique environmen-
tal conditions (high temperature and salinity) reflect those predicted in
other marine regions several decades from now (Christensen et al.,
2007).
ory (PML), Prospect Place, The
The Red Sea is categorised as a large marine ecosystem (Belkin,
2009) and sustains coral reefs that provide habitat for a diverse range
of marine organisms (Baars, Schalk, & Veldhuis, 1998), including
sponges, bi-valves, pelagic larvae, fish, crustaceans, mollusks and
echinoderms. At the base of the marine food-web, phytoplankton act
as an integral component of these coral reef ecosystems transferring en-
ergy to higher levels of the marine food-web, sustaining fisheries and
providing sustenance to many inhabitants of the region. Despite the
economic and ecological importance of the Red Sea, despite extensive
knowledge on its physical characteristics (e.g. Sofianos & Johns, 2003;
Yao, Hoteit, Pratt, Bower, Köhl, et al., 2014; Yao, Hoteit, Pratt, Bower,
Zhai, et al., 2014) given its strategic position as a commercial shipping
route, and despite extensive studies analysing the bio-optical properties
of the Gulf of Eilat (Iluz, Yacobi, & Gitelson, 2003; Labiosa, Arrigo, Genin,
Monismith, & Van Dijken, 2003; Sokoletsky, Dubinsky, Shoshany, &
Stambler, 2003; Sokoletsky, Dubinsky, Shoshany, & Stambler, 2004;
Stambler, 2005, 2006) located at the northern tip of the Red Sea, knowl-
edge on large-scale biological dynamics in the region is limited to
knowledge on the phytoplankton seasonal cycle, rates of uptake of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.04.024&domain=pdf
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carbon and nitrogen by phytoplankton, and the influence of coral reef
ecosystems on Red Sea productivity (Acker, Leptoukh, Shen, Zhu, &
Kempler, 2008; Qurban, Balala, Kumar, Bhavya, & Wafar, 2014; Racault
et al., 2015; Raitsos, Pradhan, Hoteit, Brewin, & Stenchikov, 2013).

Themain source of data used to investigate large-scale biological dy-
namics in the Red Sea has been synoptic estimates of chlorophyll con-
centration (denoted here as C and referred to in this paper as the
chlorophyll concentration, being the sum of monovinyl chlorophyll-a,
divinyl chlorophyll-a, chlorophyllide-a, and chlorophyll-a epimers and
allomers (Werdell & Bailey, 2005), a measure of phytoplankton bio-
mass) derived using satellite ocean-colour data (Acker et al., 2008;
Brewin, Raitsos, Pradhan, & Hoteit, 2013; Raitsos et al., 2013). The tem-
poral and spatial coverages of ocean-colour data surpass that of any in
situ biological datasets currently available for the Red Sea. Since the ad-
vent of thefirst ocean-colour sensor, NASA's Coastal Zone Color Scanner,
satellite ocean-colour data have been used to understand the optical
properties of the Red Sea (e.g. Kirby, Parmeter, Arnone, & Oriol, 1993)
and other biogeochemically-relevant variables such as the chlorophyll
concentration. More recently, Acker et al. (2008) used ocean-colour
data from the SeaWiFS and MODIS-Aqua sensors to investigate varia-
tions in chlorophyll concentration in the northern Red Sea, and Raitsos
et al. (2013) used data from MODIS-Aqua to describe the seasonal suc-
cession of chlorophyll and its relationship to the physical forcing.

A difficulty with biological interpretation of ocean-colour data from
the Red Sea has been the lack of in situ data required for validation and
uncertainty characterisation. There have been some validation efforts:
for instance, Barbini et al. (2004) showed reasonable agreement be-
tween satellite-derived chlorophyll and in situ lidar fluorescence-
derived chlorophyll in the Red Sea. Using in vivo fluorometric chloro-
phyll measurements collected over large spatial scales, Brewin et al.
(2013) demonstrated that the performance of standard MODIS-Aqua
chlorophyll products in the Red Sea was comparable to that in other re-
gions of the global ocean. Nonetheless, conclusions drawn on biological
variability using ocean-colour data in the Red Sea still remain uncertain,
due primarily to lack of suitable in situ datasets and limited understand-
ing of the optical properties. A further complication in using ocean-
colour data for the Red Sea is difficulties in atmospheric correction, for
instance, due to the presence of high concentrations of atmospheric
dust aerosols from the surrounding arid continents which can render
many satellite ocean-colour pixels unusable for analysis of chlorophyll
concentration (Acker et al., 2008).

Between September 2009 andMarch 2012, the Tara Oceans expedi-
tion conducted an ~91,000 kmvoyage to capture the global distribution
of marine planktonic organisms (Boss et al., 2013; Werdell, Proctor,
Boss, Leeuw, & Ouhssain, 2013). A hyperspectral absorption and
Fig. 1. (a) Bathymetry of the Red Sea (using ETOPO5 sea-floor elevation data obtained from th
noaa.gov/mgg/global/etopo5.HTML, regridded to 4 km spatial resolution)with the locations of c
piled by UNEP-WCMC available at http://data.unep-wcmc.org/datasets/13 in ArcGIS vector
Figures (b) to (d) show the distribution of the in situ and satellite match-up data used in the s
attenuation meter (WETLabs, Inc. AC-S) together with a flow-through
system (Boss et al., 2013; Slade et al., 2010) was used for continuous
measurements of absorption and attenuation by marine particles
along the entire Tara cruise track (Boss et al., 2013). During January
2010, the Tara cruise conducted a meridional transect of the Red Sea
(Fig. 1) providing the first comprehensive dataset of absorption and
attenuation by particles at large spatial scales in the Red Sea.

Recently, efforts have also beenmade to improve coverage of ocean-
colour data through the merging of data from different ocean-colour
platforms (e.g. the GlobColour project; Maritorena, Fanton d'Andon,
Mangin, & Siegel, 2010). In 2010 the European Space Agency launched
the Ocean Colour Climate Change Initiative (OC-CCI; Brewin et al.,
2015) with the goal of creating a long-term, consistent, error-
characterised time series of merged ocean-colour products (MODIS-
Aqua, SeaWiFS and MERIS), for use in climate-change studies. One of
the advantages of the OC-CCI dataset (version 1, see http://www.
oceancolour.org/) is that, by using an atmospheric correction algorithm
called POLYMER (Steinmetz, Deschamps, & Ramon, 2011) on MERIS,
which performs retrievals in the presence of sun glint, significant in-
creases in ocean-colour coveragewere attained (Steinmetz et al., 2011).

In this paper, we make use of in situ bio-optical data collected in the
Red Sea as part of the Tara Oceans expedition (Boss et al., 2013;Werdell
et al., 2013), together with previous in situ datasets (Barbini et al., 2004;
Brewin et al., 2013), to investigate the optical properties of the Red Sea
in the context of satellite ocean-colour estimates of chlorophyll concen-
tration. Using satellite (OC-CCI data) and in situmatch-ups, we evaluate
the performance of a suite of chlorophyll algorithms in the Red Sea. Dis-
crepancies between satellite and in situ chlorophyll are investigated by
developing an ocean-colour model for the Red Sea, parameterised to
data from the Tara Oceans expedition. The model describes relation-
ships between inherent optical properties of water constituents
(absorption and backscattering) and chlorophyll concentration. The
ocean-colour model is used to: i) improve our understanding of the op-
tical properties of the region and ii) tune empirical satellite chlorophyll
algorithms for use in the Red Sea. Uncertainties in our approach are
discussed and conclusions are cautiously stated given the under-
sampled nature of this region and its unique atmospheric properties.

2. Methodology

2.1. Study site

The Red Sea is an elongated basin with a mean depth of 524 m and
a surface area of ~4.5 × 1011 m2 (Patzert, 1974). A deep trench runs
along the centre of the Red Sea from north to south reaching a
e National Oceanographic and Atmospheric Administration (NOAA) at http://www.ngdc.
oral reefs overlain (from theGlobal Distribution of Coral Reefs dataset (version 2010) com-
format, which was then converted to NetCDF and gridded to 4 km spatial resolution).
tudy.

http://www.oceancolour.org/
http://www.oceancolour.org/
http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
http://data.unep-wcmc.org/datasets/13
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maximum depth of about ~2300 m, with shallower waters generally
found at the southern end and deeper waters toward the north
(Fig. 1a). The Red Sea splits into two gulfs at the northern end, the
Gulf of Aqaba and the Gulf of Suez. The transport through these gulfs
is extremely small, meaning the only significant connection between
the Red Sea and the open ocean is through the Strait of Bab el Mandeb
at the south (Sofianos & Johns, 2003), where the Red Sea interacts
with the Gulf of Aden (Fig. 1a) and seasonal water exchange occurs
(Yao, Hoteit, Pratt, Bower, Zhai, et al., 2014). Horizontal circulation in
the Red Sea is dominated by eddies (Yao, Hoteit, Pratt, Bower, Köhl,
et al., 2014; Zhan, Subramanian, Yao, & Hoteit, 2014) and overturning
is influenced by cyclonic recirculation and by overturning circulation
in the northern Red Sea, with sinking occurring along the eastern
boundary and upwelling along the western boundary (Yao, Hoteit,
Pratt, Bower, Köhl, et al., 2014). The Red Sea is surrounded by arid
land masses with low precipitation, little riverine input (Patzert,
1974) and high evaporation rates (Sofianos & Johns, 2003). The atmo-
spheric properties over the Red Sea (e.g. large dust storms: Prakash,
Stenchikov, Kalenderski, Osipov, & Bangalath, 2015) challenge
remote-sensing of ocean colour (Acker et al., 2008).

The seasonal cycles of phytoplankton, as estimated from remote-
sensing of ocean colour, indicate higher concentrations during the
wintermonths, attributed to vertical mixing in the north and horizontal
advection of nutrient-richwater in the south, andminimum concentra-
tions during the summer, associated with strong seasonal stratification
(Raitsos et al., 2013). Seasonal changes in chlorophyll may also reflect
changes in the carbon to chlorophyll ratio in response to seasonal vari-
ations in light and nutrients, with high light (lower chlorophyll) in sum-
mer and lower light (higher chlorophyll) in winter. However, during
summer months higher concentrations of phytoplankton can occur in
some regions. The Red Sea is surrounded by productive coral reefs
(Fig. 1a) which contrast in phytoplankton seasonality to open ocean
waters (peaking during summer months; Racault et al., 2015) and are
thought to contribute to the horizontal transfer of nutrients and
phytoplankton by eddies to open waters (Acker et al., 2008; Raitsos
et al., 2013). For further details on phytoplankton seasonal cycles, spa-
tial structures, trophic regimes and inter-annual variations, inferred
using ocean-colour data, the reader is referred to the recent works of
Raitsos et al. (2013, 2015), Triantafyllou et al. (2014) and Racault et al.
(2015).
2.2. In situ data

Three sources of in situ data were used in this study (Fig. 1):

• In situ hyperspectral absorption and attenuation data collected on a
flow-through system (Boss et al., 2013; Werdell et al., 2013) during
the Tara Oceans expedition in the Red Sea in January 2010 (hereafter
denoted Tara).

• In vivo fluorometric data on chlorophyll concentration collected from
three research cruises during 2008, 2010 and 2011 (Brewin et al.,
2013), as part of the Research Cruises expedition programme of the
Red Sea Research Center (RSRC) of King Abdullah University of
Science and Technology (KAUST).

• In vivo Lidarfluorescence data on chlorophyll concentration in the Red
Sea (Barbini et al., 2004) collected as part of the Mediterranean Sea,
Indian and Pacific Oceans Transect (MIPOT) oceanographic campaign
between Italy and New Zealand in November 2001.

All three sources of in situ data have been used previously for compar-
isonwith satellite ocean-colour observations (Barbini et al., 2004; Brewin
et al., 2013;Werdell et al., 2013), though their inter-consistency is subject
to caution, as discussed in Section 5.1.1. These datasets are explained in
more detail in the following sections.
2.2.1. Tara data
During January 2010, hyperspectral particulate absorption (ap(λ),

where λ is the wavelength) and particulate attenuation (cp(λ)) data
were collected in the Red Sea on the R/V Tara Oceans expedition using
a WET Labs AC-S hyper-spectral spectrophotometer and Sea-Bird Elec-
tronics SBE45 MicroTSG unit (Boss et al., 2013; Picheral et al., 2014;
Werdell et al., 2013). Water from the ship's flow-through system
(~2m depth)was passed through a Vortex debubbler and then through
aWET Labs AC-S. The flow-through system sent thewater either direct-
ly to the AC-S instrument or through a 0.2 μm cartridge filter preceding
the AC-S instrument. Spectral ap(λ) and cp(λ) in the wavelength interval
400–740 nm were then calculated by subtracting the filtered measure-
ments from the unfiltered measurements, providing calibration-
independent estimates of ap(λ) and cp(λ) accounting for instrumental drifts
and residual calibration errors. These data were downloaded from the
NASA SeaBASS website (http://seabass.gsfc.nasa.gov/: Werdell et al.,
2003) and processed following the methods described in Slade et al.
(2010). The system has been evaluated previously in awide variety of oce-
anic waters (Boss et al., 2013; Dall'Olmo, Boss, Behrenfeld, & Westberry,
2012; Dall'Olmo, Westberry, Behrenfeld, Boss, & Slade, 2009; Dall'Olmo
et al., 2011; Slade et al., 2010; Westberry, Dall'Olmo, Behrenfeld, &
Moutin, 2010) and used to evaluate satellite ocean-colour products
(Brewin, Dall'Olmo, Sathyendranath, & Hardman-Mountford, 2012;
Werdell et al., 2013). Boss et al. (2013) and Werdell et al. (2013) provide
a more detailed description of the processing methods used during Tara.

In total, 9169 spectra (one-minute binned averages) of ap(λ) and
cp(λ) were extracted from the Tara dataset spanning the Red Sea
(Fig. 1). The hyperspectral data were available at ~4 nm intervals be-
tween 404 and 736 nm. Data on ap(λ) and cp(λ) were extracted at the
following wavelengths representative of recent ocean-colour sensors
(e.g. SeaWiFS, MODIS, MERIS and VIIRS): 410, 412, 443, 486, 488, 490,
510, 530, 547, 551, 555, 560, 620, 665 and 670 nm. Where data at the
exact wavelengths were not available, spectral interpolation was used.
Data for ap(λ) were also extracted at 650, 676 and 715 nm, for estima-
tion of the chlorophyll concentration. To derive chlorophyll concentra-
tion (C) we used the method of Boss et al. (2013) and Werdell et al.
(2013), whereby the phytoplankton absorption coefficient at 676 nm
(aph(676)) is first estimated using the line height method of Davis,
Moore, Zaneveld, and Napp (1997) as modified by Boss, Collier,
Larson, Fennel, and Pegau (2007), such that

aph 676ð Þ ¼ ap 676ð Þ− 39=65ap 650ð Þ þ 26=65ap 715ð Þ� �
: ð1Þ

The chlorophyll concentrations (C) were then estimated from
aph(676) following Werdell et al. (2013), according to

C ¼ aph 676ð Þ
0:0152

� � 1
0:9055

: ð2Þ

The coefficients for Eq. (2) were computed from 52 corresponding
High Performance Liquid Chromatography (HPLC) samples of chlorophyll
and aph(676) (computed using Eq. (1), samples takenwithin 1 h) collect-
ed along the entire Tara Oceans expedition (see Fig. 1 of Werdell et al.,
2013). The method of using the line-height of the absorption peak at
red wavelengths to estimate chlorophyll concentration has been found
to perform with high accuracy when compared with discrete in situ
HPLC chlorophyll data in a wide range of natural optical environments
and diverse phytoplankton cultures (Dall'Olmo et al., 2009, 2012;
Roesler & Barnard, 2013; Westberry et al., 2010). Furthermore, the
line height determination is also effective in removing the contributions
of absorption by coloured dissolved organic matter (CDOM) and non-
algal particles, relatively independent of the effects of biofouling, and
unlike the in vivo fluorometric method for estimating chlorophyll, the
absorption line height is insensitive to incident irradiance and non-
photochemical quenching (Roesler & Barnard, 2013).

http://seabass.gsfc.nasa.gov/
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FollowingWerdell et al. (2013), the particulate backscattering coef-
ficient (bbp) was estimated from the ap and cp data by using the
scattering-to-backscattering ratio as a function of chlorophyll, according
to the method of Twardowski et al. (2001), such that

bbp λð Þ ¼ 0:0096C−0:253
� �

cp λð Þ−ap λð Þ� �
: ð3Þ

Whereas bbp modelled from ap and cp is less ideal than direct mea-
surement of bbp, the scattering-to-backscattering ratio has been shown
to vary consistently according to trophic conditions for a variety of
open-ocean waters (Dall'Olmo et al., 2012; Twardowski et al., 2001;
Whitmire, Boss, Cowles, & Pegau, 2007).

During the Tara cruise a HyperPro (Satlantic Free-Falling Optical
Profile with two HyperOCR optical sensors) was deployed at various
locations during sunny or mostly sunny periods. The instrument was
deployed in surface mode, where a float was attached to the profiler
at the surface allowing for measurements of upwelling radiance
beneath the surface and downwelling irradiance just above the water,
which are then used to compute remote-sensing reflectance (see
Chase, 2013 for data processing methods). Data on in situ remote-
sensing reflectance were available at two stations in the Red Sea.

2.2.2. RSRC data
During 2008, 2010 and 2011, oceanographic data were collected

from three research cruises as part of the Research Cruises expedition
programme of the RSRC of KAUST (Fig. 1). Continuous in vivo fluores-
cence vertical profiles were collected at each station using a WET Labs
ECO-FLNTUs (FLNTURTD-964) fluorometer attached to a CTD. A total
of 401 in situ samples from the three RSRC cruiseswere used in the anal-
ysis, consisting of average chlorophyll concentrations within the first
optical depth. Brewin et al. (2013) provide a detailed description of
the processing methods used during the three RSRC cruises (see
Section 2.1 of Brewin et al., 2013) and additional details are also provid-
ed as Supplementary material. Of the 401 in situ samples, 33 were from
2008, 107 from 2010 and 261 from the 2011 cruise.

2.2.3. MIPOT data
As part of the MIPOT oceanographic campaign, conducted between

Italy and NewZealand,measurements of surface chlorophyll concentra-
tion were derived using a lidar fluorosensor aboard the RV Italica
(Barbini, Colao, Fantoni, Fiorani, & Palucci, 2001; Barbini, Colao,
Fantoni, Fiorani, & Palucci, 2003; Barbini, Colao, Fantoni, Palucci, &
Ribezzo, 1999; Barbini, Colao, Fantoni, Palucci, & Ribezzo, 2001;
Barbini et al., 2004). Between 18th and 22nd November the RV Italica
passed through the centre of the Red Sea (Fig. 1), resulting in 505
measurements of in situ chlorophyll concentration. This data were
downloaded from the NASA SeaBASS website http://seabass.gsfc.nasa.
gov/ (Werdell et al., 2003).

2.3. Satellite data

2.3.1. OC-CCI data
The OC-CCI project is one of 14 ESA funded CCI projects and focuses

specifically on creating a consistent, error-characterised time-series of
ocean-colour products, for use in climate-change studies (Brewin
et al., 2015). From 2014, Version 1 of the OC-CCI dataset has been avail-
able for community use (http://www.oceancolour.org/). The dataset
consists of a time-series of merged and bias-corrected MERIS, MODIS-
Aqua and SeaWiFS data at 4 km-by-4 km resolution. Briefly, top-of-
atmosphere reflectance data for SeaWiFS, MODIS-Aqua and MERIS, at
visible wavebands, were processed using atmospheric-correction
models, SeaDAS (Fu, Baith, & McClain, 1998) for SeaWiFS and MODIS-
Aqua (SeaDAS version 7.0 using standard SeaDAS flags) and POLYMER
(Steinmetz et al., 2011) for MERIS. Remote-sensing reflectance (Rrs)
data from MODIS-Aqua and MERIS are then band-shifted to match the
wavelengths of SeaWiFS using an in-water bio-optical model (e.g. see
Mélin & Zibordi, 2007). MODIS-Aqua and MERIS are then bias-
corrected to SeaWiFS at each wavelength, using a pixel-by-pixel bias-
correction model developed using daily match-up data between the re-
spective sensors during over-lapping time periods, and finally the data
aremerged into a single product. For further information onOC-CCI pro-
cessing, extensive documentation can be found at the followingwebsite
http://www.esa-oceancolour-cci.org/.

We chose to use OC-CCI products primarily due to improved
coverage in the Red Sea region when compared with individual sensors
(see Fig. 2 of Racault et al., 2015) and other merged products (e.g.
GlobColour, see Section 8 of Sathyendranath & Krasemann, 2014).
Daily level 3 sinusoidal projected Rrs data at 412, 443, 490, 510, 555
and 670 nm, were downloaded from the OC-CCI website covering the
period September 1997 to July 2012. For regional verification of the
OC-CCI products, daily level 3 binned Rrs data for SeaWiFS processed
with SeaDAS, MODIS processed with SeaDAS, MERIS processed with
SeaDAS andMERIS processedwith POLYMERwere also used for the Jan-
uary 2010 period, which corresponds to the time of the Tara Expedition
passing through the Red Sea.

2.3.2. In situ satellite match-up data
Daily Rrs(λ) data fromOC-CCI werematched in time (daily temporal

matchup) and space (latitude and longitude, closest 4 km pixel) with in
situ chlorophyll data. For all in situ datasets, but particularly the under-
way cruises (Tara and MIPOT), when one or more in situ samples were
matched to the same satellite pixel, the in situ chlorophyll concentra-
tions were averaged (using log10 transformation) and considered as a
single match-up. No data were used for more than one matchup. A
total of 410 OC-CCI match-ups were obtained, 185 for Tara, 142 for
RSRC and 83 for MIPOT. The geographical distribution of these match-
ups is shown in Fig. 1. For Tara, an additional 84 SeaWiFS match-ups
were available, 152 for MODIS, 96 for MERIS processed with SeaDAS
and 154 for MERIS processed with POLYMER.

2.4. Satellite chlorophyll algorithms

2.4.1. OC4
Satellite chlorophyll (C) algorithms incorporated into the compari-

son are described in the following section. The standard NASA OC4
(v6) band-ratio chlorophyll algorithm (O'Reilly et al., 2000) is a polyno-
mial algorithmwhich relates the ratio of remote-sensing reflectances at
three pairs of wavebands with chlorophyll concentration (C), using the
following algorithm:

X ¼ log10 max Rrs 443ð Þ;Rrs 490ð Þ;Rrs 510ð Þ½ �=Rrs 555ð Þf g: ð4Þ

The chlorophyll (C) is estimated according to:

C ¼ 10 q0þq1Xþq2X
2þq3X

3þq4X
4ð Þ; ð5Þ

where q0 = 0.3272, q1 = −2.9940, q2 = 2.7218, q3 = −1.2259 and
q4 = −0.5683 (NASA, 2010).

2.4.2. OCI
The band-difference algorithmof Hu, Lee, and Franz (2012)was also

explored. This algorithm has been found to perform well at low chloro-
phyll concentrations (b0.25 mgm−3 Hu et al., 2012), which are typical
of the Red Sea (Brewin et al., 2013). The approach uses a Colour Index
(denoted here as ξ), based on a band-difference between remote-
sensing reflectance in the green part of the visible spectrum and a
base-line formed linearly between the blue and red wavebands, such
that:

ξ ¼ Rrs 555ð Þ−0:5 Rrs 443ð Þ þ Rrs 670ð Þ½ �: ð6Þ

http://seabass.gsfc.nasa.gov/
http://seabass.gsfc.nasa.gov/
http://www.oceancolour.org/
http://www.esa-oceancolour-cci.org/
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Chlorophyll is then related to ξ using the following equation:

C ¼ 10AþBξ; ð7Þ

where A=−0.4909 and B= 191.659. Since Eq. (7) was designed spe-
cifically for waters with low chlorophyll (≤0.25 mg m−3), at higher
chlorophyll concentrations (N0.3mgm−3) OC4 is used (Eq. 5), whereas
for chlorophyll concentrations between 0.25 and 0.3 mgm−3, a combi-
nation of Eqs. (7) and (5) are used to facilitate a smooth transition be-
tween algorithms. The OCI algorithm is expressed as

C ¼
10AþBξ if 10AþBξ

h i
≤0:25mgm−3

α 10 q0þq1Xþq2X
2þq3X

3þq4X
4ð Þh i

þ 1−αð Þ 10AþBξ
h i

if 0:25b 10AþBξ
h i

≤0:3mgm−3

10 q0þq1Xþq2X
2þq3X

3þq4X
4ð Þ if 10AþBξ

h i
N0:3mgm−3;

8>>><
>>>:

ð8Þ

where α serves to provide a linear transition from Eq. (7) to Eq. (5) as
chlorophyll increases from 0.25 to 0.3 mg m−3. This parameter is com-
puted as α = (10A + Bξ − 0.25)/(0.3− 0.25).

2.4.3. GSM
The semi-analytical Garver–Siegel–Maritorena (GSM)model, initial-

ly developed by Garver and Siegel (1997) and later updated by
Maritorena, Siegel, and Peterson (2002), was also used in this study.
The GSM model retrieves simultaneous estimates of chlorophyll, ab-
sorption by combined detrital and dissolved matter at 443 nm
(adg(443)) and particle backscattering at 443 nm (bbp(443)) from
Rrs(λ), assuming an underlying bio-optical model and using non-linear
optimisation. This method was designed to estimate chlorophyll inde-
pendent of influence from adg(443) and bbp(443), and output chloro-
phyll is constrained to lie within the range that was used to
parameterise the model (0.01 b C b 64 mg m−3).

2.4.4. OC4-MG
The OC4 model is designed for applications in Case-1 waters, in

which absorption and scattering by substances other than phytoplank-
ton are assumed to covary with chlorophyll concentration. Morel and
Gentili (2009b) developed a correction that can be applied to OC4-
type of algorithms, to account for deviations in absorption by gelbstoff
(coloured dissolved organic matter, CDOM, denoted ag) from the Case-
1 assumption. The OC4 algorithm corrected according to Morel and
Gentili (2009b) is referred to here as OC4-MG.

This approach is based on the assumption that the ratio of reflec-
tance at 412 nm to that at 443 nm (R(412)/R(443)) is mainly sensitive
to CDOM, albeit influenced to some extent by chlorophyll, and that
the ratio of reflectance at 490 nm to that at 555 nm (R(490)/R(555))
is essentially dependent on chlorophyll, although also influenced to
some extent by CDOM. The approach uses the bio-optical model of
Morel andMaritorena (2001), that implicitly includes a prescribed rela-
tionship between CDOM absorption and chlorophyll, and thus produces
a unique set of curves relating R(412)/R(443) to R(490)/R(555).
Deviations from the prescribed relationship are introduced using a fac-
tor ϕ, with ϕ N 1 indicating an excess and ϕ b 1 a deficit of ag per unit
chlorophyll. Morel and Gentili (2009b) produced a 2D lookup table re-
lating R(412)/R(443) to R(490)/R(555) for specific discrete values of
ϕ. Relative anomalies in CDOM (ϕ) with respect to its standard (chloro-
phyll-related) values can then be computed efficiently using reflectance
ratios derived from ocean colour, by first converting Rrs(λ) to R(λ) (see
Appendix B of Morel & Gentili, 2009b). Once ϕ is obtained, chlorophyll
from standard band-ratio algorithms (OC4) can be corrected for the ef-
fect of excess or deficit of CDOM (OC4-MG), by using another 2D lookup
table (Morel & Gentili, 2009b) and inputting the initial chlorophyll esti-
mate (OC4) and the retrieved ϕ value.
2.5. Statistical tests and algorithm ranking

To compare the performance of the satellite chlorophyll algorithms
with the in situ data in the Red Sea, a suite of univariate statistical
tests were used following Brewin et al. (2015). These included: the
Pearson correlation coefficient (r); the root mean square error (Ψ);
the average bias between model and measurement (δ); the centre-
pattern (or unbiased) root mean square error (Δ), noting that Δ2 =
Ψ2 − δ2; the slope (S) and intercept (I) of a Type-2 regression; and
the percentage of possible retrievals (η). The equations used for each
of these statistical tests are provided in Section 4.1 of Brewin et al.
(2015). All statistical tests were performed in log10 space, considering
chlorophyll is approximately log-normally distributed (Campbell,
1995), at least in the range of 0.01 to 10 mg−3 typically observed in
the open-ocean.

To rank the performance of the algorithms used in this study we
adopted the classification presented in Brewin et al. (2015). Briefly, for
each statistical test (r,Ψ, δ, Δ, S, I and η) the statistic of a model is com-
paredwith the average of all models, and a score is assigned based (pre-
dominately) on whether the statistic in question is significantly worse
(0 points), similar (1 point) or better (2 points) than the average of all
models. All points are then summed over each statistical test and the
total score for each model is normalised by the average score of all
models being tested. A score of one indicates the performance of a
model is average with respect to all models, a score greater than one in-
dicates model performance is better than the average, and a score less
than one indicates model performance is worse than average.

Following Brewin et al. (2015), the stability of the scoring system
and the sensitivity of the scores were tested using the method of
bootstrapping (Efron, 1979; Efron & Tibshirani, 1993). This involved
random re-sampling with replacement of the in situ data (1000 times)
to create 1000 new datasets of the same size as the original dataset,
but not identical to it (Monte-Carlo approach). The points classification
was then re-run for each new dataset and from the resulting distribu-
tion of scores, amean score for eachmodel was computed. Additionally,
15.9% and 84.1% confidence intervals (equivalent to one standard devi-
ation for a normal distribution) on the bootstrap distribution were
taken and assumed to be the error-bars or confidence limits on the
mean score for each model. For further details on the points classifica-
tion method the reader is referred to Section 4 of Brewin et al. (2015).

3. Ocean-colour model for the Red Sea

In this section we present an ocean-colour model that is tuned to
data in the Red Sea. It is based on the classic Case-1 bio-optical assump-
tion (Morel & Prieur, 1977) that ocean-colour reflectance can be related
to total chlorophyll concentration (C) and co-varyingmaterial. We con-
sider this assumption a reasonable starting point given that: the focus of
the study is on ocean-colour chlorophyll algorithms; the Red Sea is
oligo- to meso-trophic in nature (Raitsos et al., 2013) with negligible
terrestrial or riverine input; and little is known about the optical prop-
erties in the region.

We begin by assessing the relationship between absorption by par-
ticles (including both phytoplankton and detritus) at 443 nm, denoted
ap(443), and chlorophyll concentration (C) estimated from ap in the
red during Tara, shown in Fig. 2a. Whereas chlorophyll is estimated
from ap between 650 and 715 nm following Eqs. (1) and (2), the rela-
tionship between aph(676) and aph(443) varies due to changes in acces-
sory pigmentation among phytoplankton that influences the blue
region of the absorption spectrum with minor influence on the red re-
gion (Bricaud, Claustre, Ras, & Oubelkheir, 2004), and also because the
flattening effect on the absorption spectra, related to the size of the par-
ticles and variations in pigment concentration for a cell of a given size, is
not the same in the red and in the blue-green parts of the spectrum. As
measured during Tara in January 2010, chlorophyll varies between 0.04
and 1.0 mg m−3 (Fig. 2a), confirming the Red Sea is oligo- to meso-



Fig. 2. (a) Relationship between chlorophyll and ap(443) measured during Tara and (b) the percentage contribution of assemblages 1 (A1) and 2 (A1) to total chlorophyll as a function of
total chlorophyll (C) following the parameterisation of Brotas et al. (2013) for pico-phytoplankton.

Table 1
Parameters of the Red Sea ocean-colour model.

Parameters for the 2-component assemblage model (Eqs. 9 and 10)

Reference C1
m [mg m−3] S1 [dimensionless]

Brotas et al. (2013) 0.058 (0.054–0.063) 17.056 (14.693–18.646)

Parameters for particle absorption model (Eq. 12)

Wavelength [nm] ap,1⁎ [m2 (mg C)−1] ap,2⁎ [m2 (mg C)−1]

410 0.1823 (0.1807–0.1840) 0.0464 (0.0459–0.0468)
412 0.1858 (0.1841–0.1874) 0.0472 (0.0467–0.0477)
443 0.2132 (0.2120–0.2142) 0.0461 (0.0457–0.0465)
486 0.1341 (0.1335–0.1347) 0.0347 (0.0345–0.0350)
488 0.1313 (0.1307–0.1319) 0.0340 (0.0337–0.0342)
490 0.1284 (0.1278–0.1290) 0.0332 (0.0330–0.0334)
510 0.0745 (0.0740–0.0749) 0.0242 (0.0241–0.0244)
530 0.0344 (0.0340–0.0347) 0.0196 (0.0195–0.0197)
547 0.0195 (0.0192–0.0198) 0.0170 (0.0169–0.0172)
551 0.0183 (0.0181–0.0187) 0.0154 (0.0153–0.0156)
555 0.0168 (0.0166–0.0171) 0.0138 (0.0137–0.0140)
560 0.0156 (0.0153–0.0159) 0.0117 (0.0116–0.0119)
620 0.0110 (0.0108–0.0112) 0.0056 (0.0055–0.0057)
665 0.0251 (0.0250–0.0253) 0.0173 (0.0173–0.0174)
670 0.0291 (0.0290–0.0293) 0.0201 (0.0200–0.0201)

Phytoplankton assemblage parameters for particle backscattering model (Eq. 14)

Parameter i = 1 i = 2

bbp,i⁎(λ0) [m2 (mg C)−1] 0.0016 (0.0003–0.0028) 0.0023 (0.0022–0.0024)
γi [dimensionless] 4.48 (2.59–16.18) 0.43 (0.38–0.50)

Background component parameters for particle backscattering model (Eq. 14)

bbp
k (λ0) [m−1] γk [dimensionless]

0.00096 (0.00091–0.00102) 0.54 (0.45–0.68)

Parameters for CDOM absorption model (Eq. 18)

Parameter i = 1 i = 2

ag,i(λ0) [m2 (mg C)−1] 0.0907 (0.0655–0.1425) 0.2022 (0.1791–0.2754)
Sg,i [nm−1] 0.031 (0.028–0.038) 0.014 (0.013–0.015)

Parameters of Eq. (21) of Lee et al. (2009)a

Gw
0 (Ω) Gw

1 (Ω) Gp
0(Ω) Gp

1(Ω)

0.0604 0.0406 0.0402 0.1310

95% confidence intervals are in brackets and were estimated using a Monte-Carlo
approach and λ0 = 443 nm.

a Parameters are for solar zenith angle in air equal to zero, sensor nadir-viewangle in air
equal to zero, and a sensor azimuth angle in relation to the solar plane equal to zero,where
Ω collectively represents the three sun-sensor angular geometries.
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trophic. Fig. 2a shows two dense groups (or assemblages) of particles:
one group (hereafter denoted assemblage 1) is found between 0.06
and 0.1 mg m−3 of chlorophyll (aph(443) between 0.009 and
0.013 m−1) and the other group (hereafter denoted assemblage 2) is
found between 0.2 and 0.6 mg m−3 of chlorophyll (aph(443) between
0.013 and 0.030m−1). These assemblages are also separated geograph-
ically, with assemblage 1 foundmainly in the northern oligotrophicwa-
ters of the Red Sea and assemblage 2 in themoremesotrophic southern
waters. The optical properties of the two assemblages (with respect to
aph(443)) are significantly different, with the particulate specific
absorption coefficient at 443 nm (ap⁎(443) = ap(443)/C) of assemblage
1 considerably higher (~0.22 m2 (mg C)−1) than that of assemblage 2
(~0.05 m2 (mg C)−1).

3.1. Two-component model of chlorophyll

Based on the finding that the Red Sea is primarily dominated by two
assemblages of particles with different optical properties, we develop a
two-component ocean-colour model for the Red Sea. For this model,
assemblage 1 is representative of more oligotrophic conditions and
assemblage 2 of mesotrophic conditions. Note that other studies (e.g.
Brewin, Devred, Sathyendranath, Hardman-Mountford, & Lavender,
2011; Devred, Sathyendranath, Stuart, & Platt, 2011) have highlighted
the benefits of including a third assemblage representative of more
eutrophic conditions. However, this is not a requirement for the Red
Sea considering chlorophyll rarely exceeds 1 mg m−3. We start by
relating the chlorophyll concentration of assemblage 1 (C1) to the
total chlorophyll concentration following an equation first presented
by Sathyendranath, Stuart, Cota, Maass, and Platt (2001)

C1 ¼ Cm
1 1−exp −S1Cð Þ½ �; ð9Þ

where C1
m represents the asymptotic maximum chlorophyll concentra-

tion for assemblage 1, and S1 determines the initial increase in C1 with
C. The chlorophyll concentration of assemblage 2 (C2) can then be com-
puted according to

C2 ¼ C−Cm
1 1−exp −S1Cð Þ½ �: ð10Þ

The parameters of Eq. (9) (C1m and S1) can be computed with
knowledge on C1 and C, acquired from either High Performance Liquid
Chromatography (HPLC, Brewin, Dall'Olmo, et al., 2012; Brewin,
Hirata, et al., 2012b; Brewin et al., 2010, 2011; Brotas et al., 2013),
fluorometric analysis using size-fractionated filtration (Brewin,
Sathyendranath, Tilstone, Lange, & Platt, 2014), or from aph and chloro-
phyll data, bymaking assumptions on the relationship between C1

m and
S1 (Devred et al., 2006, 2011). As there is currently little information in
the Red Sea on HPLC or fluorometric analysis using size-fractionated
filtration, we chose to use the parameters of Brotas et al. (2013) for
pico-phytoplankton within the 1st optical depth, such that C1m ∼ 0.06
and S1 ~ 17.06 (see Table 1). We chose to use these parameters for the
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following reasons: (1) when fitting Eq. (12) (shown below) to data
in the Red Sea, these parameters resulted in the lowest bias and
the highest correlation coefficient between modelled ap(443) and
measured ap(443) when compared with results obtained using other
published parameters (e.g. Brewin, Dall'Olmo, et al., 2012; Brewin,
Hirata, et al., 2012; Brewin et al., 2010, 2011, 2014); (2) with
these model parameters, the dominant assemblage transitions from 1
to 2 at around 0.1 mg m−3 of chlorophyll (Fig. 2b), consistent with
results in Fig. 2a; and (3) these parameters were computed using
data within the penetration depth of the satellite signal (Brotas
et al., 2013). The percentage contribution of each assemblage to
total chlorophyll as a function of total chlorophyll is illustrated in
Fig. 2b.

3.2. Particulate absorption model

The particulate absorption (ap(λ)) model we adopt follows a similar
model presented by Sathyendranath et al. (2001) for phytoplankton
absorption. Here, ap(λ) is modelled as a function of chlorophyll (C)
according to

ap λð Þ ¼ a�p;1 λð ÞC1 þ a�p;2 λð ÞC2; ð11Þ

where ap,1⁎(λ) and ap,2⁎(λ) represent the chlorophyll-specific particulate
absorption coefficients of assemblages 1 and 2, respectively. Expanding
Fig. 3. Parameters of the Red Sea two-component bio-optical model: (a) chlorophyll-specific p
particulate backscattering coefficients (bbp) as a function of wavelength and the background b
(ag) as a function ofwavelength for the two assemblages (A1 andA2). Figures d–f show the relati
data and the fitted model.
Eq. (11) by inserting Eqs. (9) and (10) results in the following
expression:

ap λð Þ ¼ Cm
1 a�p;1 λð Þ−a�p;2 λð Þ
h i

1−exp −S1Cð Þ½ � þ a�p;2 λð ÞC: ð12Þ

By setting C1m and S1 according to Brotas et al. (2013) (Table 1, Fig. 2),
Eq. (12) was fitted to ap(λ) and C from Tara to derive ap,1⁎(λ) and
ap,2⁎(λ). The fitting procedure used a standard, non-linear least squares
method (Levenberg–Marquardt, IDL Routine MPFITFUN Moré, 1978;
Markwardt, 2008), and was fitted in log10 space, assuming a log-
normal distribution for ap(λ) (Bricaud, Morel, Babin, Allali, & Claustre,
1998). The retrieved parameters, provided in Table 1 and plotted in
Fig. 3a,were obtained by taking themedian and 95% confidence interval
on the 1000 bootstraps. This involved: randomly re-sampling the data
with replacement to create 1000 new datasets of the same sample
size as the original dataset but not identical to it or each other; fitting
Eq. (12) to each dataset to obtain a distribution of parameters; and
then taking the median and 95% confidence intervals on the estimated
parameter distribution, the latter to provide an indication of uncertainty
on the retrieved parameter. Assemblage 1 has a higher chlorophyll-
specific particulate absorption in the blue region of the spectrum
when compared with assemblage 2 (Fig. 3a). Eq. (12) captures the var-
iability in ap as a function of C with low error (Table 2), and the pro-
posed relationship between ap(443) and C is similar to that presented
articulate absorption coefficients (ap) as a function of wavelength, (b) chlorophyll-specific
ackscattering component (bbpk ), and (c) chlorophyll-specific CDOM absorption coefficients
onship between ap(443) and C, bbp(443) and C, and ag(443) and C respectively, for the Tara



Table 2
Performance of Eqs. (12), (14) and (18).

Wavelength [nm] ap ag bbp

r Ψ r Ψ r Ψ

410 0.937 0.079 0.919 0.122 0.778 0.091
412 0.937 0.078 0.919 0.123 0.778 0.091
443 0.969 0.050 0.920 0.142 0.776 0.091
486 0.979 0.045 0.920 0.162 0.787 0.090
488 0.979 0.045 0.920 0.162 0.788 0.090
490 0.978 0.045 0.920 0.163 0.790 0.090
510 0.977 0.051 0.920 0.168 0.795 0.090
530 0.970 0.070 0.920 0.172 0.796 0.091
547 0.959 0.092 0.919 0.177 0.799 0.090
550 0.957 0.094 0.919 0.178 0.800 0.090
555 0.953 0.098 0.919 0.180 0.800 0.090
560 0.948 0.101 0.919 0.182 0.799 0.090
620 0.904 0.129 0.919 0.226 0.784 0.094
665 0.994 0.033 0.919 0.278 0.763 0.102
670 0.996 0.026 0.919 0.284 0.763 0.102

r refers to the Pearson correlation coefficient and Ψ the root mean square error. All
statistical tests were performed in log10 space.
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by Bricaud et al. (1998) using a global dataset, but with no measure-
ments in the Red Sea (Fig. 3d).

3.3. Particulate backscattering model

Various models have been presented that relate particulate back-
scattering (bbp) to chlorophyll (C) in open-ocean (Case-1) waters (e.g.
Huot, Morel, Twardowski, Stramski, & Reynolds, 2008; Morel &
Maritorena, 2001; Sathyendranath et al., 2001; Twardowski et al.,
2001). To maintain consistency with the two-component model of par-
ticulate absorption (Eq. 12),we used the approach of Brewin, Dall'Olmo,
et al. (2012), such that

bbp λð Þ ¼ Cm
1 b�bp;1 λð Þ−b�bp;2 λð Þ
h i

1−exp −S1Cð Þ½ � þ b�bp;2 λð ÞC
þ bkbp λð Þ; ð13Þ

where bbp,1⁎(λ) and bbp,2⁎(λ) represent the chlorophyll-specific particu-
late backscattering coefficients of assemblage 1 and 2 respectively,
and bbp

k (λ) represents a constant background. It is worth noting that
the two assemblages used in this study (assemblage 1 and 2) are differ-
ent from those used in Brewin, Dall'Olmo, et al. (2012). In the Brewin,
Dall'Olmo, et al. (2012) study, where the focus was on developing a
model from oligo- to eu-trophic waters, small cells were grouped as
pico-nanoplankton (cells b20 μm) and larger cells as microplankton
(cells N20 μm). Alternatively in this study, where the focus is on oligo-
to meso-trophic waters, assemblage 1 is likely more representative of
the picoplankton size class and assemblage 2 of the nanoplankton size
class. This difference is reflected in the choice of parameters for C1m

and S1 in Eq. (13).
Eq. (13) was fitted using bbp(λ) and C from Tara to derive bbp,1⁎(λ),

bbp,2⁎(λ) and bbp
k (λ) using the same fitting procedure as that used in

Eq. (12) and setting C1
m and S1 according to Brotas et al. (2013)

(Table 1). Following Brewin, Dall'Olmo, et al. (2012), the spectral de-
pendency of bbp,1⁎(λ), bbp,2⁎(λ) and bbp

k (λ) was assumed to follow a
power function, such that

bbp λð Þ ¼ b�bp;1 λ0ð Þ λ=λ0ð Þ−γ1 Cm
1 1−exp −S1Cð Þ½ �� 	

þ b�bp;2 λ0ð Þ λ=λ0ð Þ−γ2 C−Cm
1 1−exp −S1Cð Þ½ �� 	

þ bkbp λ0ð Þ λ=λ0ð Þ−γk ;

ð14Þ

where γ1, γ2 and γk represent the exponents of the power function de-
scribing the spectral shape of each component of the model, and λ0 =
443 nm. Having obtained a distribution of parameters for bbp,1⁎(λ),
bbp,2⁎(λ) and bbp

k (λ) from fitting Eq. (13) to the bbp(λ) and C data, the
remaining parameters (γ1, γ2 and γk) were obtained by fitting a
wavelength-dependent power function to bbp,1⁎(λ), bbp,2⁎(λ) and
bbp
k (λ). Retrieved parameters for Eq. (14) are provided in Table 1

together with their 95% confidence intervals and plotted in Fig. 3b.
In general, assemblage 2 has a higher (and better constrained)

chlorophyll-specific particulate backscattering than assemblage 1 at
most wavelengths (Fig. 3b), with assemblage 1 having a steeper
power exponent than assemblage 2, consistent with the expectation
that smaller particles have a steeper power exponent than larger parti-
cles (Kostadinov, Siegel, & Maritorena, 2009; Loisel, Nicolas, Sciandra,
Stramski, & A.P., 2006). However, it is worth noting that the background
component γk is flatter than that observed by Brewin, Dall'Olmo, et al.
(2012) and thatγ1 is also very high (close to that ofmolecular scattering
by pure-water, see Table 1). It is likely that more data at very low chlo-
rophyll concentrations would help to separate better the spectral shape
of backscattering by the background component and that by assem-
blage 1 when fitting Eq. (14). Nonetheless, Eq. (14) is seen to capture
most of the variability in bbp as a function of chlorophyll (C) with rea-
sonable error statistics (Table 2). The model captures the general
trend in bbp(443)with increasing chlorophyll, and is in good agreement
with that proposed by Brewin, Dall'Olmo, et al. (2012) using a global
dataset that did not contain any measurements from the Red Sea
(Fig. 3e).

3.4. CDOM absorption model

Considering that no direct measurements of CDOM absorption were
taken during Tara, we used satellite match-ups between in situ chloro-
phyll and satellite OC-CCI Rrs to develop a dataset of CDOM absorption
(ag) and chlorophyll, from which we could parameterise a model.
Using the 185 OC-CCI match-ups for Tara, we first converted Rrs(λ) to
R(λ) (see Appendix B of Morel & Gentili, 2009b) and implemented the
Morel and Gentili (2009b) 2D lookup table to obtain ϕ. Of the 185
match-ups, there were 157 realistic estimates of ϕ with 28 ϕ estimates
falling outside the realistic range (Morel & Gentili, 2009b). The values of
ϕ were found to vary between 1.29 and 8.76, with a median value of
2.11 and a standard deviation of 1.25, and indicate that absorption by
CDOM per unit chlorophyll during Tara was on average twice that of
standard Case-1 relationships. Absorption by CDOM at 400 nm
(ag(400))was computed for each in situ sample using in situ chlorophyll
data and the estimate of ϕ (Morel, 2009; Morel & Gentili, 2009b), such
that

ag 400ð Þ ¼ ϕ0:065C0:63: ð15Þ

To estimate ag(λ) from ag(400), Morel and Gentili (2009b) used a
fixed value of 0.018 nm−1 for the exponential slope of CDOM with
wavelength (Sg). Whereas the 2D lookup table used to obtain ϕ implic-
itly includes this hypothesis, a sensitivity study in Morel and Gentili
(2009b) indicates the choice of the Sg is not crucialwhen derivingϕ. Re-
cent evidence from in situ and satellite inversion data indicates Sg is neg-
atively correlated with ag at a reference wavelength (Bricaud, Ciotti, &
Gentili, 2012; Swan, Nelson, Siegel, & Fields, 2013), likely related to
the selective bleaching of some CDOM components by sunlight
(Whitehead et al., 2000), and possibly important in regions exposed
to high doses of solar radiation such as the Red Sea. Using data from
the NASA NOMAD dataset (Werdell & Bailey, 2005), from only Case-1
waters, following Lee and Hu (2006), and data from the Bermuda Bio-
Optics Project (Siegel et al., 2001), Sg was found to be significantly cor-
related with ag(400) following a non-linear relationship (Sg =
0.0086ag(400)−0.2024, r = 0.61, p b 0.0001, see Supplementary
Fig. S1). This relationship was used to estimate spectral ag from the
157 estimates of ag(400), such that

ag λð Þ ¼ ag 400ð Þexp −0:0086ag 400ð Þ−0:2024 λ−400ð Þ
h i

: ð16Þ



72 R.J.W. Brewin et al. / Remote Sensing of Environment 165 (2015) 64–85
For the 157measurements, Sg was found to vary between 0.011 and
0.020 nm−1, with a median value of 0.018 nm−1 and a standard devia-
tion of 0.002 nm−1, and was consistent with the value of 0.018 nm−1

originally used by Morel and Gentili (2009b).
Having developed this dataset of inferred ag(λ) and C characteristic

of conditions in the Red Sea during the Tara Expedition, this dataset
was used to develop a Red Sea model that related ag(λ) directly to C,
given that no direct measurements of CDOM absorption were available.
For consistency with the two-component model of particulate absorp-
tion (Eq. 12), we used a similar approach to describe the relationship
between chlorophyll (C) and ag(λ), where

ag λð Þ ¼ Cm
1 a�g;1 λð Þ−a�g;2 λð Þ
h i

1−exp −S1Cð Þ½ � þ a�g;2 λð ÞC; ð17Þ

and ag,1⁎(λ) and ag,2⁎(λ) represent the chlorophyll-specific absorption
coefficient by CDOM of assemblage 1 and 2 respectively. Eq. (17) was
fitted using the 157 corresponding ag(λ) and C measurements from
the Tara Expedition to derive ag,1⁎(λ) and ag,2⁎(λ) using the same fitting
procedure as that used in Eq. (12) and setting C1

m and S1 according to
Brotas et al. (2013) (Table 1). Statistically, the performance of Eq. (17)
was similar to that of a traditional power function fitted to the same
dataset (Z-test at 443 nm, p = 0.95; Cohen & Cohen, 1983). Since C1

m

and S1 were prescribed (Brotas et al., 2013), there are two unknown pa-
rameters in Eq. (17), which is the same as the number of parameters re-
quired to fit a power function. Given the exponential function (Eq. 16)
that ag(λ) follows, Eq. (17) can be expressed according to

ag λð Þ ¼ a�g;1 λ0ð Þexp −Sg;1 λ−λ0ð Þ� �
Cm
1 1−exp −S1Cð Þ½ �� 	

þ a�g;2 λ0ð Þexp −Sg;2 λ−λ0ð Þ� �
C−Cm

1 1−exp −S1Cð Þ½ �� 	
;

ð18Þ

where Sg,1 and Sg,2 represent the exponential slopes of CDOM for each
assemblage, and λ0 = 443 nm. Having obtained the values of ag,1⁎(λ)
and ag,2⁎(λ) at every wavelength from fitting Eq. (17), the parameters
Sg,1 and Sg,2 were then obtained by fitting the exponential function to
ag,1⁎(λ) and ag,2⁎(λ). The retrieved parameters for Eq. (18) are provided
in Table 1 together with their 95% confidence intervals and are plotted
in Fig. 3c.

From the resulting parameterisation of Eq. (18), waters where as-
semblage 2 reside are seen to have higher CDOM absorption for a
given chlorophyll concentration, at most wavelengths, than waters
where assemblage 1 reside, and a lower exponential slope (Fig. 2c).
The model is seen to capture the trend in ag(443) with increasing
chlorophyll (Fig. 3f, see also Table 2 for statistical tests). However, the
Red Sea model estimates a significantly higher amount of ag(443) for
a given chlorophyll concentration (Fig. 3f) when compared with stan-
dard global relationships (Morel, 2009; Morel & Gentili, 2009b).

3.5. Remote sensing reflectance (Rrs) model

Once the IOPs of ap, ag and bbp are known, they can be combinedwith
pure seawater IOPs to estimate total absorption (a) and backscattering
(bb), such that

a λð Þ ¼ ap λð Þ þ ag λð Þ þ aw λð Þ; ð19Þ

and

bb λð Þ ¼ bbp λð Þ þ bbw λð Þ; ð20Þ

where aw(λ) and bbw(λ) are pure water IOPs for absorption and back-
scattering respectively. For the Red Sea model, pure water aw from
Pope and Fry (1997) and bbw from Zhang and Hu (2009) and Zhang,
Hu, and He (2009) were used. The bbw values were computed assuming
a salinity of 40 psu and a water temperature of 27 °C, typical of the
northern oligotrophic waters of the Red Sea (Raitsos et al., 2013;
Triantafyllou et al., 2014; Yao, Hoteit, Pratt, Bower, Zhai, et al., 2014)
where bbw has a high contribution to bb.

Various methods have been proposed to relate a(λ) and bb(λ) to
Rrs(λ) (e.g. Gordon et al., 1988; Lee, Carder, & Arnone, 2002). Here we
used the approach of Lee, Lubac, Werdell, and Arnone (2009), Lee,
Arnone, Hu, Werdell, and Lubac (2010), Lee, Shang, et al. (2010), Lee
et al. (2013) that explicitly separates the phase-function effects of mo-
lecular and particle scattering, such that

Rrs λ;Ωð Þ ¼ Gw
0 Ωð Þ þ Gw

1 Ωð Þ bbw λð Þ
a λð Þ þ bb λð Þ


 �
bbw λð Þ

a λð Þ þ bb λð Þ
þ Gp

0 Ωð Þ þ Gp
1 Ωð Þ bbp λð Þ

a λð Þ þ bb λð Þ

 �

bbp λð Þ
a λð Þ þ bb λð Þ ;

ð21Þ

where parameters G0
w(Ω), G1

w(Ω), G0
p(Ω), and G1

p(Ω) were derived from
Hydrolight simulations (Lee et al., 2009) for various Sun angles and
viewing geometries, withΩ collectively representing these geometries.
Parameters are provided in Table 1 for a solar zenith angle in air equal to
zero, sensor nadir-view angle in air equal to zero, and a sensor azimuth
angle in relation to the solar plane equal to zero (i.e. fully-normalised).
Eqs. (12), (14), (18), (19), (20) and (21) can be used together with
model parameters in Table 1 and pure water IOPS (Pope & Fry, 1997;
Zhang &Hu, 2009; Zhang et al., 2009) to reconstruct Rrs(λ) as a function
of chlorophyll (C).

4. Results

4.1. Performance of the Red Sea ocean-colour model

The Red Sea ocean-colour model was first evaluated using the 185
OC-CCI satellite Rrs and chlorophyll match-ups during Tara. Using in
situ chlorophyll, Rrs from 412 to 555 nm was reconstructed using the
model (Eqs. 12, 14, 18, 19, 20 and 21). Reconstructed Rrs are compared
with observed Rrs from satellite data (OC-CCI) in Fig. 4. The top row of
plots show the reconstructed and observed absolute values of Rrs.
Between 412 and 510 nm there is good agreement between model
and observations, with correlation coefficients (r) exceeding 0.8 and
low errors (Ψ b 0.001 sr−1, Δ b 0.0009 sr−1). There is a slight tendency
for themodel to underestimate Rrs(412) at larger values (Fig. 4), and for
Rrs(555) themodel is relatively invariant and struggles to reproduce the
variability shown in the OC-CCI observations.

Whereas themagnitude of Rrs is important for deriving IOPs, it is the
shape of the Rrs (the spectral values of Rrs normalised to the correspond-
ing value at a singlewavelength) that is particularly sensitive to changes
in chlorophyll (O'Reilly et al., 2000). The bottom row of plots in Fig. 4
compares the Rrs from themodel, normalised at 555 nm,with the corre-
sponding Rrs from OC-CCI. In general, there is good agreement between
model and observations at all wavelengths, with high correlation coeffi-
cients (r N 0.94), low errors (Ψ b 0.49, Δ b 0.45) and biases (δ) close to
zero. Similar conclusions can be drawn when comparing the Colour
Index (ξ, see Eq. 6) reconstructed from the model with the observed ξ
from OC-CCI (Fig. 4).

We also conducted a similar comparison on in situ spectra collected
using the HyperPro at two stations in the Red Sea (see Supplementary
Fig. S2). Results resonate with the comparison in Fig. 4, with the
model underestimating at high values of Rrs in the blue region of the
spectrum (found at both stations), and in better agreement with the
shape of the in situ Rrs (normalised at 555 nm).

4.2. Performance of satellite chlorophyll algorithms

In general, all four algorithms performed reasonably at estimating
chlorophyll when compared with in situ values (r N 0.60 and Ψ b 0.29,
Fig. 5). According to the objective classification, two empirical algo-
rithms (OC4 andOCI) have the best overall performance (highest points
score in the bar chart in Fig. 5). This is mainly due to a combination of a



Fig. 4. Comparison of reconstructed remote sensing reflectance (Rrs) using in situ chlorophyll (C) and OC-CCI observed Rrs. The top row of figures show the absolute values of Rrs and the
bottom row the shape of Rrs, normalised at 555 nm, and the Colour Index (ξ). Black line refers to 1:1 line.
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higher correlation coefficient (r) for these two algorithms when com-
pared with GSM and OC4-MG, a lower centre-pattern (or unbiased)
root mean square error (Δ), a Type-2 regression slope (S) close to one,
themaximumpercentage of possible retrievals (η), and high confidence
in the retrieved bias (δ) and intercept (I). However, despite the better
performance of OC4 and OCI according to the classification, both
algorithms systematically overestimate chlorophyll, as indexed by a
positive bias significantly different from zero (δ, Fig. 5), which was not
observed for the GSM and OC4-MG algorithms.

4.3. Tuning of empirical satellite chlorophyll algorithms

Consistent with previous ocean-colour models (e.g. Gordon et al.,
1988; Morel, 1988; Morel & Maritorena, 2001; Sathyendranath et al.,
2001) as the chlorophyll concentration decreases the Red Sea ocean-
colour model predicts an increase in Rrs at blue wavelengths and a
slight decrease in green and red wavelengths (Fig. 6a). Fig. 6b shows a
plot of chlorophyll (C) as a function of the maximum band-ratio
(Rrs(443 N 490 N 510)/Rrs(555)) using output from the Red Sea ocean-
colour model with the OC4 algorithm overlain. For a given maximum
band-ratio of Rrs, the Red Sea ocean-colour model predicts significantly
lower chlorophyll than theOC4 algorithm. Similarly, whenweplot chlo-
rophyll (C) as a function of the Colour Index (ξ) using output from the
Red Sea ocean-colour model (Fig. 6c) with the relationship used in the
OCI algorithm overlain, we observe that the Red Sea ocean-colour
model predicts a higher ξ than the OCI algorithm at chlorophyll concen-
trations less than 0.3 mg m−3.

To investigate if the bias observed in the OC4 and OCI algorithms
(Fig. 5) can be explained using the Red Sea ocean-colour model, we
reparameterised the OC4 and OCI algorithms using output from the Red
Sea ocean-colour model (hereafter denoted OC4-RG and OCI-RG respec-
tively, where RG refers to regionally-tuned). The Red Sea ocean-colour
model was run for 2560 logarithmically-space bins between 0.01 and
10.0 mg m−3 chlorophyll to derive the corresponding Rrs(λ) values.

4.3.1. OC4-RG
For the OC4-RG algorithm, Eq. (5) was fitted to output from the Red

Sea model and the tuned parameters are provided in Table 3. As the
Red Sea ocean-colour model outputs at a variety of wavelengths
representative of recent and future ocean-colour sensors (NASA, 2010),
parameters for standard band-ratio algorithms that function at slightly
different wavelengths (for application to MODIS, MERIS, OLCI and VIIRS)
are also provided in Table 4. Note that for these algorithms Eq. (4) ismod-
ified depending on the Rrs ratio provided in Table 3, and Eq. (5) is then
used alongwith the corresponding values for q0, q1, q2, q3 and q4 provided
in Table 3. TheOC4-RG algorithm is overlain in Fig. 6b andmatches the re-
lationship between chlorophyll (C) and the maximum band-ratio with
which it was parameterised (Red Sea forward model).

4.3.2. OCI-RG
Fig. 6c shows that for ξ values between−0.005 and−0.001, the re-

lationship between log10 chlorophyll (C) and ξ in the Red Sea forward
model is linear, however, above −0.001 ξ this relationship breaks
down. Using radiative transfer modelling, Hu et al. (2012) showed
that above a ξ value of−0.0005 sr−1, assuming a linear relationship be-
tween log10 chlorophyll (C) and ξ results in a significant underestima-
tion in chlorophyll. For the Red Sea, the forward model predicts that
the ξ value above which the linear relationship breaks down is slightly
lower at around −0.001 sr−1 (Fig. 6c). Therefore, Eq. (7) was tuned
using output from the Red Sea forward model for ξ values lower than
−0.001 sr−1, and the resulting parameters are provided in Table 4. In
comparison to the original parameters of Hu et al. (2012), where
A = −0.491 and B = 191.66, there was a significant decrease in A
(−0.802) and a slight increase in B (197.74). A reduction in the A pa-
rameter is consistent with the results of Brewin et al. (2013), using a
dataset entirely independent of any measurements used to
parameterise the Red Sea ocean-colour model.

As the ξ value at which the linear relationship between log10 chloro-
phyll (C) and ξ breaks down is slightly lower for the Red Sea (Fig. 6c),
the boundaries at which the algorithm switches from a band-
difference (ξ) to a band-ratio (OC4-RG) were modified accordingly,
such that the OCI-RG algorithm is expressed as

C ¼
10AþBξ if 10AþBξ

h i
≤0:10mgm−3

α 10q0þq1Xþq2X
2þq3X

3þq4X
4

h i
þ 1−αð Þ 10AþBξ

h i
if 0:10b 10AþBξ

h i
≤0:15mgm−3

10 q0þq1Xþq2X
2þq3X

3þq4X
4ð Þ if 10AþBξ

h i
N0:15mgm−3;

8>>><
>>>:

ð22Þ



Fig. 5. Results from the chlorophyll (C) model comparison. The bar chart at the top shows the results from the point classification and scatter plots of modelled and in situ chlorophyll are
shown below for the OCI, OC4, OC4-MG and GSM. Black line refers to 1:1 line and dashed line Type-2 regression.
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where α=(10A + Bξ− 0.10)/(0.15− 0.10). The parameters for A and B
are provided in Table 4 and the corresponding values for q0, q1, q2, q3
and q4 are provided in Table 3. The model parameters for wavelengths
relevant to MODIS, MERIS, OLCI and VIIRS are also provided in Table 4.
Note that for implementation of these algorithms, Eqs. (6) and (22)
are used with the Rrs band-difference (Table 4), values for A and B
(Table 4), and the band-ratio algorithm (Table 3) that are appropriate
Fig. 6. (a) Rrs(λ) plotted as a function ofwavelength for a variety of chlorophyll concentrations (C
band-ratio for the OC4model, output from the Red Sea ocean-colourmodel (forwardmodel), an
model. (c) Shows C plotted as a function of the Colour Index (ξ) using the parameterisation of Hu
relationship, denoted ξRG, tuned using output from the Red Sea ocean-colour model below a ξ
for the sensor used. The linear relationship between log10 chlorophyll
and ξ tuned to the Red Sea (denoted ξRG), is laid over the forward
model and the ξ model of Hu et al. (2012). We see that the forward
model and the Red-Sea-tuned ξ model match each other very well for
ξ values less than−0.001 sr−1, for which it was parameterised (Fig. 6c).

To verify further that the OC4-RG and OCI-RG algorithms reproduce
the relationships between Rrs and chlorophyll in the Red Sea model, we
) using the Red Sea ocean-colourmodel. (b) Shows Cplotted as a function of themaximum
d a tunedOC4model, denoted OC4-RG, tuned using output from the Red Sea ocean-colour
et al. (2012), output from the Red Sea ocean-colourmodel (forwardmodel), and a tuned ξ
value of −0.001 sr−1.



Table 3
Values of the coefficients for standard, empirical band-ratio chlorophyll algorithms tuned to the Red Sea ocean-colour model for a suite of ocean-colour sensor wavelengths.

Sensor/dataset Identifiera Rrs ratio q0 q1 q2 q3 q4

SeaWiFS/OC-CCI OC4-RG max(443, 490, 510)/555 −0.0381 −2.9297 4.6447 −5.5384 1.9556
MERIS/OLCI OC4ME-RG max(443, 490, 510)/560 −0.0472 −2.5860 3.4994 −3.9545 1.2466
MODIS OC3MO-RG max(443, 488)/547 −0.1333 −2.4079 2.7585 −3.4081 1.1122
VIIRS OC3VI-RG max(443, 486)/551 −0.1307 −2.1605 2.1482 −2.6768 0.8301

a ME=MERIS, MO=MODIS and VI= VIIRS. The reader is also referred to NASA (2010) for more information on the algorithms. RG refers to a tuning of the algorithm to the Red Sea.
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conducted a sensitivity analysis (Supplementary Fig. S3). For chlorophyll
concentrations ranging from 0.01 to 10.0 mg m−3 we used the Red Sea
ocean-colour model to estimate Rrs and then applied the OC4-RG and
OCI-RG algorithms to the Rrs to compute chlorophyll concentration. If
both algorithms were parameterised correctly, initial chlorophyll should
agree with chlorophyll derived from the empirical models, as confirmed
by the results in Supplementary Fig. S3 for both OC4-RG and OCI-RG.
We also introduced random noise into the Rrs values prior to applying
OC4-RG and OCI-RG algorithms, whereby for a given Rrs value, wave-
length independent random noise between ±10% (or ±20%) was
applied to the Rrs estimated from the Red-Sea ocean-colour model,
then this spectrum was used to estimate chlorophyll using OC4-RG
and OCI-RG and compared with initial chlorophyll values. Results are
shown in Supplementary Fig. S3 and indicate both OC4-RG and OCI-
RG cope well with the addition of random noise in Rrs up to 20%.
4.4. Performance of tuned empirical satellite chlorophyll algorithms

The two tuned algorithms perform significantly better, as indexed by
higher scores than for the other algorithms (Fig. 7). The systematic
overestimation in chlorophyll observed in the untuned OC4 and OCI
algorithms is no longer apparent in the tuned algorithms (Fig. 7). The
Red Sea ocean-colour model used to parameterise OC4-RG and OCI-RG
relates changes in ap, bbp and ag to changes in chlorophyll concentration.
The relationships between ap and chlorophyll and the relationships
between bbp and chlorophyll from the Tara dataset (Fig. 3) were found
to be similar to those observed using globally representative datasets
(Brewin, Dall'Olmo, et al. 2012; Bricaud et al., 1998). However, the rela-
tionship between ag and chlorophyll (Fig. 3f) was significantly different,
with the Red Sea model requiring a higher amount of ag for a given
chlorophyll concentration when compared with standard global rela-
tionships (Morel, 2009; Morel & Gentili, 2009b), possibly suggesting
an excess of CDOM absorption per unit chlorophyll in the Red Sea as
the possible cause of the systematic overestimation in chlorophyll
observed in the original OC4 and OCI algorithms.

To test this hypothesis, we replaced Eq. (18) with the ag model of
Morel (2009) in our Red Sea model (see Fig. 3f) and re-parameterised
the OC4 algorithm (Eq. 5, denoted OC4-RG-M09) where q0 = 0.4010,
q1 = −2.9973, q2 = 3.6843, q3 = −4.6653 and q4 = 1.6263. Fig. 8
shows a comparison of scatter plots of modelled and in situ chlorophyll
for OC4, OC4-RG-M09 and OC4-RG. The systematic overestimation in
chlorophyll observed in OC4 (positive bias (δ)) is also observed with
OC4-RG-M09, emphasising that a higher-than-average CDOM absorp-
tion per unit chlorophyll in the Red Sea ocean-colour model (Eq. 18)
Table 4
Values of the coefficients for the band-difference algorithm of Hu et al. (2012) tuned to the Re

Sensor/dataset Identifiera Rrs band-differen

SeaWiFS/OC-CCI OCI-RG Rrs(555) − 0.50(
MERIS/OLCI OCIME-RG Rrs(560) − 0.53(
MODIS OCIMO-RG Rrs(547) − 0.46(
VIIRS OCIVI-RG Rrs(551) − 0.48(

Note that for implementation of Eq. (22), α = (10A + Bξ − 0.10)/(0.15− 0.10).
a ME = MERIS, MO = MODIS and VI = VIIRS. RG refers to a tuning of the algorithm to the
appears to explain why the bias (δ) is closer to zero for OC4-RG and
why it performs better in the algorithm evaluation than OC4 (Fig. 7).
4.5. Application to OC-CCI satellite images

The OC4, OCI, OC4-RG and OCI-RG algorithms were run on daily OC-
CCI data for the year 2010 and used to produce monthly composites
(after log10 transformation), which were then used to produce annual
chlorophyll composites (Fig. 9). The spatial patterns in the 2010 annual
chlorophyll composites are consistent with the description of Raitsos
et al. (2013) using MODIS-Aqua data. The northern Red Sea is the most
oligotrophic with higher chlorophyll values in the southern regions, and
around coral reef-bound coastal waters (Fig. 1a). The log10 differences be-
tween annual chlorophyll composites of OC4 and OC4-RG, and OCI and
OCI-RG, are also plotted in Fig. 9. Differences between empirical algo-
rithms are roughly systematic (positive bias) over the entire chlorophyll
range, and similar for both the band-ratio (OC4 and OC4-RG) and band-
difference (OCI and OCI-RG) algorithms. Differences are slightly larger at
higher chlorophyll concentrations, around shallow regions (b200 m, see
Fig. 1a) in the southern Red Sea and near coral reefs. In very shallow wa-
ters, estimates of chlorophyll using empirical algorithms have high uncer-
tainty, due to the potential influence of bottom reflectance on the shape
of the Rrs spectrum. In more oligotrophic waters, such as the northern
Red Sea, differences are slightly larger between the OCI and OCI-RG
algorithms, when compared with differences between OC4 and OC4-RG.

Fig. 10 shows two OC-CCI daily images of chlorophyll concentration
for 11th January and 31st May 2010 produced using the OCI-RG
algorithm. The percentage contribution of assemblage 1 and 2 (denoted
A1 and A2 respectively) are also plotted for each daily image, by using
the OCI-RG algorithm (Eq. 22) and Eqs. (9) and (10). Note that the use
of Eqs. (9) and (10) with OCI-RG derived chlorophyll is consistent
with the framework of the Red Sea model, considering OCI-RG was
parameterised using the Red Sea model in which Eqs. (9) and (10) are
embed explicitly. The 11th January 2010 shows a clear OC-CCI image
during the period of Tara. The geographical distribution of chlorophyll
on the 11th January 2010 is similar to the annual composites shown
in Fig. 9. The percentage contribution of assemblage 1 and assemblage
2 to total chlorophyll indicates assemblage 1 dominates the northern
waters of the Red Sea and assemblage 2 the southern waters (Fig. 10).
However, comparison with the 31st May 2010 illustrates just how dy-
namic the patterns in chlorophyll concentration can be in the Red Sea.
During this day, blooms of phytoplankton, dominated by assemblage 2
(P2) and likely influenced by enhanced meso-scale eddy activity during
this period (Acker et al., 2008; Raitsos et al., 2013; Zhan et al., 2014), or
d Sea ocean-colour model for a suite of ocean-colour sensor wavelengths.

ce (ξ) A B

Rrs(443) + Rrs(670)) −0.8021 197.7366
Rrs(443) + Rrs(665)) −0.7625 188.2083
Rrs(443) + Rrs(670)) −0.8843 212.5575
Rrs(443) + Rrs(670)) −0.8417 204.7011

Red Sea.



Fig. 7. Results from the chlorophyll (C) model comparisonwhen including the two regionally tuned empirical algorithms (OC4-RG and OCI-RG). The bar chart at the top shows the results
from the point classification and scatter plots of modelled and in situ chlorophyll are shown below for the OC4-RG and OCI-RG. Black line refers to 1:1 line and dashed line Type-2
regression.

76 R.J.W. Brewin et al. / Remote Sensing of Environment 165 (2015) 64–85
wind-driven upwelling and downwelling (Labiosa et al., 2003), swirl
around the northern half of the Red Sea (Fig. 10).

Seasonal climatologies of chlorophyll concentration and the per-
centage contribution of assemblage 1 (A1) and assemblage 2 (A2) to
total chlorophyll, processed using the OCI-RG algorithm over the entire
OC-CCI time-series (1997–2012), are shown in Fig. 11 to illustrate the
typical seasonal succession. The temporal variations in chlorophyll in
open ocean regions of the Red Sea are consistent with those described
by Raitsos et al. (2013), with higher concentrations during the winter
and lower concentrations during the summer. However, coral reef-
bound coastal waters (Fig. 1a) display equal or higher chlorophyll dur-
ing the summer period relative to that in winter (Racault et al., 2015).
Over the majority of the northern Red Sea, assemblage 1 (A1) contrib-
utes highly to the chlorophyll concentration in summer and autumn
with a lower contribution during spring and winter. The southern Red
Sea and coral reef-bound coastal waters are dominated by assemblage
2 (A2) all year around, with coral reef-bound coastal waters having a
lower contribution of A2 in spring, and open-ocean waters having a
lower contribution of A2 in autumn.
Fig. 8. Scatter plots of modelled and in situ chlorophyll for OC4, OC4-RG-M09 a
5. Discussion

5.1. Uncertainties in the analysis

5.1.1. In situ chlorophyll data
Chlorophyll data used in the study came from three different

sources, in vivo fluorescence, Lidar fluorescence, and particulate absorp-
tion line height. Each of these methods are subject to uncertainties. In
vivo fluorescence in surface waters can be affected by daytime-
fluorescence quenching (Cullen & Lewis, 1995). The fluorescence yield
can also vary among species (Kiefer, 1973b; Strickland, 1968) andwith-
in a single species, subjected to different environmental conditions
(Kiefer, 1973a; Slovacek & Bannister, 1973). Using the same in vivofluo-
rescence data, Brewin et al. (2013) observed a positive bias in the OCI
algorithm usingMODIS-Aqua, in both high- and low-light samples, sug-
gesting that the positive bias in OC4 andOCI observed in the in vivo fluo-
rescence data in this study (Fig. 5) was not related to daytime-
fluorescence quenching. Nonetheless, despite the fluorometer being
laboratory calibrated prior to each cruise, it was not field calibrated as
nd OC4-RG. Black line refers to 1:1 line and dashed line Type-2 regression.



Fig. 9. Annual OC-CCI Red Sea chlorophyll (C) composites for 2010 estimated from the OC4, OCI, OC4-RG and OCI-RG algorithms. The log10 differences between annual chlorophyll com-
posites of OC4 and OC4-RG, and OCI and OCI-RG, are also plotted.
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no independent measurements of chlorophyll (e.g. from HPLC or from
in vitro fluorometry) were taken during the three RSRC cruises.

Lidar fluorescence is also subject to similar issues as in vivo fluores-
cence. The method assumes a linear regime for the laser excitation
and a low chromophore density for all the species present, accurate cal-
ibration of fluorescence signal against concurrent Raman signal from
water, and accurate calibration of Raman units to chlorophyll concen-
tration (Barbini, Colao, Fantoni, Fiorani et al., 2001). During the MIPOT
oceanographic campaign, conventional analyses were performed ac-
cording to the spectrofluorometric technique and the fluorescence-to-
Raman ratio and absolute concentrations were found to be well corre-
lated (Barbini et al., 2004), lending some confidence to the MIPOT data.

Of the three chlorophyll methods, the use of absorption line height
to estimate chlorophyll concentration is likely to be the most reliable.
It is relatively insensitive to instrument drift, incident irradiance and
non-photochemical quenching (Roesler & Barnard, 2013). The method
has also been found to perform well when compared with discrete in
situ HPLC chlorophyll data and diverse phytoplankton cultures (Boss
et al., 2013; Chase et al., 2013; Dall'Olmo et al., 2009, 2012; Roesler &
Barnard, 2013; Westberry et al., 2010). Nonetheless the method is still
subject to uncertainties: for instance, Eq. (2) was calibrated using con-
currentHPLCdata and ap(λ) taken during the entire TaraOceanographic
campaign in a wide range of bio-optical environments over the global
ocean. Measurements of HPLC were taken at 4 m depth (similar to
underway sampling (~2 m depth)) at four stations in the Red Sea.
When comparing chlorophyll from HPLC with chlorophyll estimated
from the AC-S (Eqs. 1 and 2, averaged over a 30 minute window when
the HPLC data were collected), one measurement was in reasonable
agreement, but the other three observations showed higher chlorophyll
from HPLC (δ ~ 0.3), similar to the average bias between OCI and in
situ chlorophyll (Fig. 5). These three HPLC estimates were not only
higher than those estimated from the AC-S, but also higher than:
(i) chlorophyll estimated using a fluorometer (pre-calibrated with
HPLC data) mounted to a CTD at the three stations and (ii) chlorophyll
estimated from a suite of inversion algorithms applied to the in situ Rrs
data at two of the three stations (data not shown). Furthermore, when
dividing HPLC chlorophyll by aph(676) derived from the AC-S,
to compute the chlorophyll-specific phytoplankton absorption coeffi-
cient at 676 nm at the three stations, the average value was 0.0086 m2

[mg C]−1, unusually low for an oligotrophic to mesotrophic environ-
ment (Bricaud, Babin, Morel, & Claustre, 1995). Conclusions cannot be
drawn from only four HPLC observations, which themselves are subject
to uncertainty (Claustre et al., 2004), but the result emphasises the im-
portance of taking concurrent observations of chlorophyll from differ-
ence sources, to reduce ambiguity and quantify uncertainty.

When considering the uncertainties in all three sources of in situ
chlorophyll data, one may question whether standard algorithms do
in fact systematically overestimate chlorophyll in the Red Sea, and



Fig. 10. TwoOC-CCI daily images of chlorophyll concentration for 11th January and 31stMay 2010 produced using theOCI-RG algorithm. The percentage contribution of assemblage 1 (A1)
and assemblage 2 (A2) are also plotted for each daily image, using the OCI-RG algorithm and Eqs. (9) and (10).
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whether this overestimation is instead an artefact of uncertainty in the
in situ data itself. At this stage it is worth emphasising that the system-
atic overestimate of OC4 and OCI was observed individually for all three
sources of in situ chlorophyll data (Fig. 5), thus lending support to their
reliability and to the tuning of the algorithms (Fig. 7). To further
illustrate this point, and to emphasise the consistency and inter-
compatibility of the three in situ datasets, we created a satellite OC4
composite of chlorophyll (OC-CCI data) over the duration of each cruise,
and compared satellite chlorophyll estimates with in situ data spatially
(see Supplementary Fig. S4). Results show that: i) there is good agree-
ment in spatial variability between in situ data and satellite chlorophyll
for all three datasets; and ii) there is a consistent overestimate (positive
bias) in satellite OC4 chlorophyll across all three in situ datasets.

Labiosa et al. (2003) compared SeaWiFS-derived chlorophyll con-
centrations (OC4v4) with in situ chlorophyll, derived fluorometrically
(in vitro), at Eilat located at the northern tip of the Gulf of Aqaba, at a
pier close to the shore (Genin, Lazar, & Brenner, 1995). Consistent
with our findings, they observed that standard SeaWiFS algorithms
overestimated chlorophyll at high concentrations (bloom periods).
However, at lower concentrations they observed a slight underestima-
tion of SeaWiFS derived chlorophyll. This underestimationwas likely re-
lated to differences in the location of the satellite data (just offshore of
Eilat) with respect to the in situ data (taken from a Pier), considering
Labiosa et al. (2003) observed a small positive bias between in situ
chlorophyll data collected from the Pier with that 1 kmoffshore, despite
very good correlation (see Fig. 2d of Labiosa et al., 2003). Additional
datasets on in situ chlorophyll concentration in the Red Sea are clearly
required to scrutinise our findings further.

5.1.2. In situ measurements of IOPs used for bio-optical modelling
Measurements of particulate absorption (ap) and attenuation (cp),

taken using the flow-through set-up of Slade et al. (2010), have
been well validated over a variety of oceanographic environments
(Dall'Olmo et al., 2009, 2011, 2012; Slade et al., 2010; Westberry et al.,
2010). Boss et al. (2013) analysed ap and cp data over the entire Tara
Oceanographic campaign and found the data to be consistent with
other published data. Following the method of Werdell et al. (2013),
bbp was estimated from ap and cp using the method of Twardowski
et al. (2001), which assumes the scattering-to-backscattering ratio
varies as function of chlorophyll (Eq. 3). Whereas the scattering-to-
backscattering ratio has been shown to vary consistently according to
trophic conditions (Dall'Olmo et al., 2012,, Twardowski et al., 2001;
Whitmire et al., 2007), the reported variability around the relationship
is high, and it remains to be established whether the Twardowski
et al. (2001) relationship holds in the Red Sea. Validation of this ap-
proach would require concurrent measurements of ap, cp and bbp
along with chlorophyll, currently not available for the Red Sea. Direct
measurement of bbp and chlorophyll at large scales are clearly



Fig. 11. Seasonal climatologies of chlorophyll concentration (C) and the percentage contribution of assemblage 1 (A1) and assemblage 2 (A2), over the entire OC-CCI time-series (1997–
2012) processed using the OCI-RG algorithm, for Winter (December, January and February), Spring, (March, April and May), Summer (June, July and August) and Autumn (September,
October and November).
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preferable, though some comfort can be taken from the good agree-
ment between bbp estimated using Eq. (3) and independent satellite
observations of bbp (Werdell et al., 2013). When comparing Tara Red
Sea match-ups of log10-transformed bbp(443) estimated using GSM
with log10-transformed bbp(443) estimated using Eq. (3), we found a
low bias (δ ~ −0.08) and root mean square error (Ψ ~ 0.25), but the
GSMmodel did struggle to reproduce the variability in bbp(443) primar-
ily as a consequence of a few outliers and a low range of variability in
the match-ups.

Considering that no direct measurements of ag(λ) were used in the
study, and that ag(λ) was estimated using in situ chlorophyll (Eq. 15),
the corresponding estimates of ϕ from satellite data (Morel & Gentili,
2009b) and assuming a relationship between ag(400) and Sg derived
from measurements outside Red Sea waters (Eq. 16), uncertainty in
the derivation of ag(λ) requires particular attention. The inverse rela-
tionship between ag(400) and Sg used in Eq. (16) is consistent with sat-
ellite observations of Sdg (where the subscript “dg” refers to combined
CDOM and detrital absorption) derived by Bricaud et al. (2012), and
values of Sdg observed from satellite (between 0.01 and 0.02 nm−1 in
the Red Sea, see Fig. 1 of Bricaud et al., 2012) are consistent with values
of Sg used in this study. Estimates of ϕ, used in Eq. (15), are the primary
source of data describing region-specific CDOM absorption content in
the Red Sea, and thus are given particular attention in the next section.

5.1.3. Satellite measurements of ϕ
Values of ϕ were estimated from satellite observations (OC-CCI)

using the method of Morel and Gentili (2009b). As discussed by Morel
and Gentili (2009b), see also Morel and Gentili (2009a), the quality of
retrieved Rrs(412) is crucial for accurate estimation ofϕ, and yet estima-
tion of Rrs(412) is difficult, and match-ups based on satellite and in situ
Rrs data often find this wavelength to have the highest errors (e.g. Mélin
& Zibordi, 2007; Mélin et al., 2011). Retrievals of Rrs(412) rely to a cer-
tain degree on accurate vicarious calibration, and errors can increase
when the sun zenith angle and viewing angle increase (IOCCG, 2010,
though sun zenith angle is perhaps not such a problem in the Red Sea,
due to its close proximity to the tropics). In situ measurements of
Rrs(λ) over large areas are currently not available for the Red Sea, but
are required to ascertain potential biases in ϕ, and validate any
region-specific bio-optical relationship based on Rrs(λ). Values of ϕ
were computed on the in situ spectra collected using the HyperPro at
two stations in the Red Sea (see Supplementary Fig. S2). Both stations
showed values of ϕ greater than one (1.4 and 1.5), consistent with ob-
servations from satellite data. At one station, a corresponding satellite
daily match-up of Rrs(λ) from OC-CCI was available, which was found
to be in good agreement with the in situ spectrum collected using the
HyperPro (see Supplementary Fig. S2c and S2d). When estimating ϕ
using both satellite and in situ Rrs(λ) spectra, values of ϕ were greater
than one (1.5 and 2.3, respectively) in both cases, suggesting a higher
amount of ag(443) for a given chlorophyll concentration when com-
pared with average global relationships. However, satellite estimates
of ϕ were higher (2.3) than in situ estimates (1.5).

Additional uncertainties in satellite measurements of ϕ might arise
from the unique atmospheric properties of the region. The Red Sea is
surrounded by deserts and frequently influenced by dust storms
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(Chen et al., 2007; Edwards, 1987), commonduring spring and summer.
Whereas cloud cover is generally low in the region, dust aerosols make
atmospheric correction difficult, cause a reduction in ocean-colour re-
trievals (Acker et al., 2008; Steinmetz et al., 2011) and may systemati-
cally influence Rrs(412). Desert dust has also been shown to influence
the retrieved Rrs(λ) spectrum, leading to biases in the retrieval of the
chlorophyll concentration (Claustre et al., 2002; Moulin, Gordon,
Chomko, Banzon, & Evans, 2001). When absorbing aerosols are present
in the atmosphere, atmospheric correction in the blue bands becomes
less accurate (Moulin et al., 2001). Claustre et al. (2002) demonstrated
that Saharan dust deposition can lead to enhanced absorption in the
blue and backscattering in the green parts of the visible spectrum,
directly resulting in an over-estimation of chlorophyll concentration in
oligotrophic waters, and likely, a high ϕ index. The influence of dust
on the observed systematic overestimation of chlorophyll by OC4 and
OCI (Fig. 5), and on the estimates of ϕ used to tune the Red Sea bio-
optical model (Eq. 18), cannot be ruled out.

Whereas (to our knowledge) no direct measurements of ag(λ) are
available at large spatial scales in the Red Sea, two recent cruises, con-
ducted by RSRC of KAUST university in March and November 2013,
made measurements of coincident fluorometric-CDOM concentration
(FCDOM, in ppb) and chlorophyll concentration (in vivo fluorescence),
using a WET Labs, Inc. Eco Sensor mounted onto a CTD profiler, in the
central-northern Red Sea (see Fig. 12a). Conversion from measured
FCDOM concentration in ppb to ag(λ) is difficult (Xing, Morel,
Claustre, D'Ortenzio, & Poteau, 2012). Differences in sensor calibrations
used to convert FCDOM output values (counts) into ppb units vary, as
do conversions from ppb to ag(λ), even in similar regions (Xing et al.,
2012). However, values of FCDOM in ppb may give some indication as
to whether CDOM is relatively high or not. A total of 107 profiles were
made during the two cruises (70 in March and 37 in November). A de-
tailed description of the processing of the March and November 2013
cruises is provided in the Supplementary material.

For both the March and November cruises FCDOM was positively
correlated with chlorophyll (p b 0.001, Fig. 12b). However, for the
March cruise the amount of FCDOM per unit chlorophyll was higher
than the November cruise, likely as result of the March cruise sampling
close to the coastline of Jeddah, near coral reefs and anthropogenic influ-
ence (Fig. 12a). When comparing the ratio R(412)/R(443) to R(490)/
R(555) derived from aMODIS-Aqua composite computed over the peri-
od of each cruise and related ϕ values, theMarchmatch-ups show a sig-
nificantly lower R(412)/R(443) for a given R(490)/R(555) than the
November match-ups, and thus higher ϕ values (see Fig. 12c). Whereas
the absolute ϕ values derived from MODIS cannot be verified, results
from this analysis suggest that theϕ index captured the relative changes
in FCDOM among the March and November cruises, lending support to
the use of the Morel and Gentili (2009b) ϕ index in the Red Sea.

Another way to verify relative changes in the ϕ index proposed by
Morel and Gentili (2009b) is to check whether seasonal variations in ϕ
(and hence CDOM) are consistent with knowledge of interactions
Fig. 12. (a) Shows the location of the samples used in twoKAUST cruises (March and November
FCDOMand chlorophyll for both cruises and (c) shows a plot of reflectance ratios R(412)/R(443
MODIS-Aqua composite averaged over the time period of each cruise.
between CDOM and marine physical processes. The November 2013
cruise was located primarily in offshore waters in the central Red Sea
(see Fig. 12a and Supplementary Fig. S5a), away from the coastline of
Jeddah (unlike the March 2013 cruise). Supplementary Fig. S5b shows
the average vertical profile of FCDOM for the November cruise and the
average mixed layer depth (MLD), computed as the depth at which the
temperature changed by 0.5 °C relative to the surface temperature
(Monterey & Levitus, 1997; Raitsos et al., 2013). Consistent with other re-
gions in the global ocean (Nelson & Siegel, 2013), FCDOM concentration
increases below the mixed layer. Assuming no effect of horizontal advec-
tion or changes in light, an increase inMLD is likely to result in an increase
in the average FCDOM concentration in the mixed-layer, as deep CDOM-
rich waters will become entrained to the surface mixed layer. Consistent
with this hypothesis, we observed a significant (p b 0.05) positive corre-
lation between MLD and average FCDOM concentration in the mixed-
layer (see Supplementary Fig. S5c) during the November cruise.

To test whether seasonal variations in the ϕ index are coupled to
seasonal variations in MLD, we focused on the Northern Red Sea
(above 24°N) as this region is controlled primary by seasonal variations
in vertical convection (Sofianos & Johns, 2003; Triantafyllou et al., 2014;
Yao, Hoteit, Pratt, Bower, Köhl, et al., 2014). When comparing average
monthly climatological values of the ϕ index above 24°N, derived
from the SeaWiFS sensor (downloaded from the NASA ocean-colour
website http://oceancolor.gsfc.nasa.gov/), with modelled seasonal vari-
ations inMLD from Yao, Hoteit, Pratt, Bower, Köhl, et al. (2014), we find
a significant (p b 0.05) positive correlation (r = 0.85, p = 0.003,
Fig. 13a). Furthermore, average monthly climatological values of the ϕ
index above 24°N are significantly negatively correlated (r = −0.88,
p = 0.002, Fig. 13b) with climatological values of sea surface tempera-
ture (SST) derived from MODIS-Aqua, consistent with the assumption
that increases in MLD bring deep, cooler CDOM-rich water into the sur-
face mixed layer. The CDOM index is also significantly negatively corre-
lated (r = −0.76, p = 0.002, Fig. 13c) with monthly climatological
values of photosynthetically available radiation (PAR) above 24°N de-
rived from SeaWiFS, consistent with knowledge of bleaching of some
CDOM components by enhanced sunlight (Nelson & Siegel, 2013;
Vodacek, Blough, DeGrandpre, Peltzer, & Nelson, 1997; Whitehead
et al., 2000). We also compared monthly climatological variations in ϕ
and aerosol optical thickness (AOT) derived from SeaWiFS. Interesting-
ly, we observed an inverse correlation (r=−0.85, p=0.003, Fig. 13d),
suggesting that when the aerosol thickness is at its lowest (during win-
ter when skies are clearer) ϕ is at its highest, and during spring and
summer when aeolian dust events are more frequent, ϕ is relatively
low (Fig. 13d), though still considerably higher than one. If higher ϕ
values in the Red Sea were linked with atmospheric aerosols, one may
have expectedϕ to increasewith increasing AOT. The results emphasise
that seasonal variations in ϕ are consistent with knowledge on interac-
tions between CDOMandmarine physical processes (Blough, Zafiriou, &
Bonilla, 1993; Nelson & Siegel, 2013), and lend support to the use of the
ϕ index (Morel & Gentili, 2009b) in the Red Sea.
2013) of corresponding FCDOM and chlorophyll data. (b) Shows the relationship between
) versus R(490)/R(555) for each sample, of each cruise, derived from thematch-ups using a

http://oceancolor.gsfc.nasa.gov/


Fig. 13. Seasonal climatologies in the northern Red Sea (above 24°N) of the ϕ index (CDOM
index, Morel & Gentili, 2009b) derived from the SeaWiFS sensor, the mixed layer depth
(MLD) from Yao, Hoteit, Pratt, Bower, Köhl, et al. (2014), sea surface temperature (SST) de-
rived fromMODIS-Aqua, photosynthetically available radiation (PAR) derived from SeaWiFS
and aerosol optical thickness (AOT) derived from SeaWiFS. Satellite data were downloaded
from the NASA ocean-colour website http://oceancolor.gsfc.nasa.gov/.
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5.1.4. Bio-optical modelling
The bio-optical framework of the Red Sea ocean-colourmodel can be

traced back to the work of Sathyendranath et al. (2001) and Devred
et al. (2006), whereby the absorption properties of two-component
groups (or assemblages) were shown to vary with chlorophyll concen-
tration. In our Red Sea ocean-colour model, all IOPs are tied to the chlo-
rophyll biomass and dominant assemblage of phytoplankton, with the
model assuming each assemblage resides in a distinctive bio-optical
environment (Alvain, Loisel, & Dessailly, 2012). Two- and three-
component models of phytoplankton absorption and backscattering,
based on the work of Sathyendranath et al. (2001), have been devel-
oped and validated using data from different areas of the global ocean
(Brewin, Dall'Olmo, et al. 2012; Brewin et al., 2011; Devred et al.,
2006, 2011; Sathyendranath et al., 2001, 2004). In this study, we have
simply taken this modelling framework and re-parameterised it using
data in the Red Sea.

It has been shown that three-componentmodels can bemore repre-
sentative of the transition in optical properties from oligotrophic to eu-
trophic waters when compared with two-component models (Brewin
et al., 2011; Devred et al., 2011). However, a two-component model
was used in the case of the Red Sea as surface chlorophyll concentra-
tions rarely exceed 1 mg m−3 (Fig. 2), such that a three-component
model is unnecessary when considering the law of parsimony. Howev-
er, blooms of phytoplankton with high chlorophyll may occasionally
occur in the Red Sea (Genin et al., 1995), and it remains to be revealed
how well the two-component model copes under such conditions. The
Red Sea model is also fairly simplistic, not accounting for inelastic pro-
cesses such as Raman Scattering that can impact satellite retrievals
of optical constituents in oligotrophic waters (Lee et al., 2013;
Sathyendranath & Platt, 1998; Westberry, Boss, & Lee, 2013). However,
algorithms for deriving chlorophyll concentration (e.g. OC4 and OCI)
that are empirically parameterised using in situ Rrs(λ) and chlorophyll
data include, implicitly, the Raman effects. Thus the systematic overes-
timation in chlorophyll observed in the Red Sea by these approaches is
unlikely to be attributable to inelastic effects, although higher CDOM
concentrations may depress Raman emission at bands used by OC4.

The parameterisation of any bio-optical model is ultimately related
to the quality of the datasets used and their inherent uncertainties.
With better quality datasets model parameterisation can be improved.
The Red Sea model was parameterised using Tara data, collected during
the month of January 2010, around the peak of the seasonal succession
of phytoplankton (Raitsos et al., 2013) (Fig. 11). Chlorophyll-specific
IOPs presented in Table 1 are likely to have seasonal (Devred et al.,
2006) and even inter-annual variations. We have already demonstrated
that the ϕ index has a clear seasonal cycle in the northern Red Sea
(Fig. 13). Retuning of OC4 and OCI algorithms for the Red Sea (OC4-RG
and OCI-RG respectively) was verified using data between November
and March (MIPOT, Tara and RSRC), but the performance of the algo-
rithms during the summer (May–October) is yet to be tested. Additional
data is required to evaluate the suitability of these retuned algorithms
for processing summer satellite data in the Red Sea.

Algorithms such as the OC4-RG and OCI-RG proposed here are em-
pirical in nature. The inferred relationship between chlorophyll and re-
flectance ratios (or differences) contains implicit dependence of the
relationship on the change in phytoplankton community structure
with change in chlorophyll, and on the covariance of other absorbing
and scattering materials with chlorophyll. These algorithms are not de-
signed to copewith changes in these relationshipswhichmay occur in a
future climate. For instance, in recent years there have been an increas-
ing frequency and intensity of Noctiluca scintillans blooms in the Indian
Ocean and Arabian Sea (Gomes et al., 2014). Blooms of this species have
also been observed in the Red Sea (Mohamed &Mesaad, 2007). If in the
future, the phytoplankton community structure changes, or if associat-
ed variables change (e.g. CDOM and non-algal particle concentration),
these alterations will interfere with the performance of empirical
algorithms. On-going comparisons (and re-calibration) with in situ
data, coupled with surveillance of other products from satellite in
these regions (such as N. scintillans: Werdell, Roesler, & Goes, 2014),
is required to monitor performance of these empirical chlorophyll
algorithms.

5.1.5. Use of OC-CCI data
We chose to use OC-CCI data primarily due to improved coverage in

the Red Sea region when compared with individual sensors and other
merged products, so as to maximise the number of satellite and in situ
match-ups. However, given that this merged product is relatively new,
it would seem pertinent to verify whether the results found in our
study using OC-CCI data are consistent with data from individual sen-
sors. During 2010 when the Tara Oceans expedition sampled in the
Red Sea, SeaWiFS, MODIS-Aqua and MERIS were all operating in
parallel. Supplementary Fig. S6 shows results from a comparison of
match-ups of SeaWiFS, MODIS-Aqua and MERIS derived chlorophyll,
using standard band-ratio algorithms, OCI and the tuned algorithms
(Tables 3 and 4), with in situ chlorophyll data from Tara. Consistent
with OC-CCI, SeaWiFS, MODIS-Aqua and MERIS derived chlorophyll
all show a systematic overestimation in chlorophyll when using the

http://oceancolor.gsfc.nasa.gov/
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OC4 and OCI algorithms. When using the revised algorithms (Tables 3
and 4) the systematic overestimation in chlorophyll disappears and
satellite chlorophyll is in better agreementwith in situ chlorophyll (Sup-
plementary Fig. S6), supporting the results using OC-CCI data.

Considering OC-CCI data are merged at Level-3 processing, satellite
and in situ match-ups in this study were conducted using daily Level-3
products, unlike standard NASA validation protocols (Bailey & Werdell,
2006). However, results from the match-ups presented here using the
RSRC data (Fig. 5) resonate with the results from Brewin et al. (2013 see
their Fig. 2) using Level 2 (1 km) MODIS-Aqua satellite data in-line with
NASA validation protocols, supporting the use of Level-3 products for
match-up analysis in this study.

5.2. Evidence for and against high CDOM absorption per unit chlorophyll in
the Red Sea

Results from our analysis suggest that standard empirical ocean-
colour algorithms, based either on a band-ratio (OC4) or band-
difference (OCI), overestimate chlorophyll in the Red Sea, possibly due
to an excess of CDOM absorption per unit chlorophyll. Knowledge on
the sources and sinks of CDOM in the Red Sea remain elusive. An
argument thatwould contradict our hypothesis is that there is very little
riverine input in the Red Sea (Patzert, 1974), such that any additional
CDOM is unlikely to come from terrestrial sources. A further argument
against high CDOM is that the Red Sea is close to the tropics, and
exposed to intense surface irradiance. Therefore, any CDOM produced
would be expected to undergo rapid degradation from photo-bleaching
(Nelson & Siegel, 2013; Vodacek et al., 1997). As discussed in the previ-
ous sections, there are also other reasons that may explain an overesti-
mation in chlorophyll from standard satellite algorithms, such as
uncertainty in the performance of atmospheric-correction algorithms
and effects of aeolian dust deposition on the optical properties of the
water (Claustre et al., 2002).

Despite these arguments, there is some evidence that may support
the hypothesis of higher CDOM absorption than average in the Red
Sea. Firstly, the results do not imply the Red Sea is rich in CDOM, but
simply that CDOM is higher than in the average oligotrophic–mesotro-
phic environment (i.e. for a given chlorophyll concentration). Using sat-
ellite and in situ data, Morel and Gentili (2009a) found that CDOM
absorption in the nearby Mediterranean Sea is twice that observed at
the same latitude in the Atlantic Ocean. Nearby to the Red Sea, the
Mediterranean Sea is also a semi-enclosed basin. It is possible that a re-
fractory component of CDOMmight have built up over time that is resis-
tant to degradation fromphoto-bleaching. The Red Sea is also home to a
vast number of coral reefs that sustain a huge amount of biological pro-
ductivity and fisheries (Munday, Jones, Pratchett, & Williams, 2008).
Red Sea coral reefs produce large amounts of dissolved organic matter
(DOC, see van Duyl & Gast, 2001; Wild, Niggl, Naumann, & Hass, 2010;
Yahel, Sharp, Marie, Häse, & Genin, 2003), and it may be that a compo-
nent of this DOC is correlatedwith CDOM. Boss and Zaneveld (2003) ob-
served enhanced concentrations of CDOM near coral reefs and near
seagrass beds. It may be that benthic processes in basins with a high
amount of area at boundaries relative to total area (such as the Red
Sea and theMediterranean), could influence CDOMmore than in basins
such as the Atlantic and Pacific.

Higher CDOM per unit chlorophyll may also be related to a positive
relationship between enhanced metabolic processes and temperature
(Taucher & Oschlies, 2011). The Red Sea is among the warmest seas
on the planet, changes in microbial-loop activity with temperature
(Behrenfeld, 2011) may alter production and degradation of CDOM.
The Red Sea is also subject to high irradiance. In high light environments
changes in the ratio of phytoplankton carbon to chlorophyll may result
in modifications in the ratio of chlorophyll to CDOM, without any
change in the ratio of phytoplankton carbon to CDOM. Ultimately,
additional datasets are required to verify if the Red Sea has elevated
CDOM absorption per unit chlorophyll.
6. Summary

Using an objective classification, and a dataset of satellite (OC-CCI
products) and in situ chlorophyll match-up data, we tested the perfor-
mance of two standard ocean-colour empirical chlorophyll algorithms
(one based on a blue to green band-ratio, OC4, and the other a band-
difference, OCI), a semi-analytical algorithm, and an empirical algorithm
that accounts for the influence of CDOMon the remotely-sensed chloro-
phyll estimates. We found that the two empirical algorithms (OC4 and
OCI) had the highest performance, but systematically overestimated
chlorophyll when compared with the in situ data.

By developing a Red Sea ocean-colour model, parameterised where
possible to data from the Red Sea, we adjusted the two ocean-colour
empirical algorithms for chlorophyll estimation and the systematic
overestimation in chlorophyll originally observedwas removed. The re-
lationships of particulate absorption andparticulate backscatteringwith
chlorophyll that are used in the Red Sea model, are similar to
established global relationships, but the amount of CDOM absorption
per unit chlorophyll concentration in themodel is higher than standard
global relationships. An enhanced amount of CDOM absorption per unit
chlorophyll in the Red Sea was found to explain the overestimation in
chlorophyll originally observed for the OCI and OC4 algorithms. A series
of algorithms adjusted for the Red Sea have been proposed, designed
for a range of ocean-colour sensors, and are now available for further
testing. Given the unique and understudied marine and atmospheric
environment of the region, uncertainties in the in situ data, and the po-
tential influence of aeolian dust on atmospheric correction, additional
information is required to scrutinise our findings.
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